Hi everyone,

I have 2 lotka-volterra equations

$\displaystyle x' = ax(1 - x) - bxy $

$\displaystyle y' = cy(1 - y) - dxy $

where x and y is the population of the species normalised by the carrying capacity of the ecosystem. a,b,c,d are positive constants.

How do I determine the equilibrium points of the system, and whether or not these points are stable?