derivative of 10^7x squared.
the log part kinda throws me. any help
Is this the question: $\displaystyle \frac{d}{dx} \left(10^{7x}\right)^2$ ?
If so, first simplify:
$\displaystyle = \frac{d}{dx} {\color{red}10^{{\color{blue}14x}}} \qquad \text{Since: } \left(a^{b}\right)^c = a^{bc}$
Then, use the chain rule:
$\displaystyle = \underbrace{{\color{red}10^{{\color{blue}14x}}} \ln 10}_{\displaystyle (a^x)' = a^x \ln a} \cdot \left({\color{blue}14x}\right)'$
$\displaystyle = \hdots$
$\displaystyle \frac{d}{dx} {\color{red}10}^{{\color{blue}7x^2}}$
Not any different, just apply the chain rule:
$\displaystyle = \underbrace{{\color{red}10}^{{\color{blue}7x^2}}\l n 10}_{\displaystyle (a^x)' = a^x \ln a} \cdot \ \ \left({\color{blue}7x^2}\right)'$