1. ## Calculus

If anyone could please answer any of these questions i will highly appreciate it

find dy(over)dx or f'(x) for the following:

1) f(x) = 4x^3 + 6x^2 - 7x - 5

2) y = 15x^2 - 8x - 7

3) y = x^4 - 6x^3 - 6x^2 - 8x

4) f(x) = 9 - 36x - 3x^2 + 2x^3

2. All of these can be answered using the power rule and the addition rule: $\frac{d}{dx} x^n = nx^{n-1}$ and h(x) = f(x) + g(x) implies h'(x) = f'(x) + g'(x)

3. Originally Posted by Brownhash
If anyone could please answer any of these questions i will highly appreciate it

find dy(over)dx or f'(x) for the following:

1) f(x) = 4x^3 + 6x^2 - 7x - 5

2) y = 15x^2 - 8x - 7

3) y = x^4 - 6x^3 - 6x^2 - 8x

4) f(x) = 9 - 36x - 3x^2 + 2x^3
$\left( 1 \right){\text{ }}y = 4x^3 + 6x^2 - 7x - 5 \hfill \\$

$\frac{{dy}}
{{dx}} = 12x^2 + 12x - 7 \hfill \\$

$\left( 2 \right){\text{ }}y = 15x^2 - 8x - 7 \hfill \\$

$\frac{{dy}}
{{dx}} = 30x - 8 \hfill \\$

$\left( 3 \right){\text{ }}y = x^4 - 6x^3 - 6x^2 - 8x \hfill \\$

$\frac{{dy}}
{{dx}} = 4x^3 - 18x^2 - 12x - 8 \hfill \\$

$\left( 4 \right){\text{ }}y = 9 - 36x - 3x^2 + 2x^3 \hfill \\$

$\frac{{dy}}
{{dx}} = - 36 - 6x + 6x^2 \hfill \\$