1.) lim as x--> infinity (x - cube root of x)
2.) lim as x-->0+ ln(2x)
Anyone know how to solve these limit equations? Thanks.
$\displaystyle x - x^{\frac{1}{3}} = x^{\frac{1}{3}}(x^{\frac{2}{3}} - 1) $
$\displaystyle \lim_{x \to \infty} x^{\frac{1}{3}}(x^{\frac{2}{3}} - 1)$
$\displaystyle \lim_{x \to \infty} x^{\frac{1}{3}} \cdot \lim_{x \to \infty} (x^{\frac{2}{3}} - 1)$
finish up
$\displaystyle \lim_{x \to 0^+} \ln(2x) $
$\displaystyle \lim_{x \to 0^+} (\ln{x} + \ln{2})$
$\displaystyle \lim_{x \to 0^+} \ln{x} + \lim_{x \to 0^+} \ln{2}$
finish up