how do u find the value of
lim (3-(7/(x-4))(1-(6/(x+2))
as x approaches 4
$\displaystyle \bigg(3 - \frac{7}{x -4}\bigg)\bigg(1 - \frac{6}{x + 2}\bigg)$
$\displaystyle \bigg(\frac{3x- 12 -7}{x-4}\bigg)\bigg(\frac{x + 2 - 6}{x + 2}\bigg)$
$\displaystyle \bigg(\frac{3x -17}{x - 4}\bigg)\bigg(\frac{x-4}{x + 2}\bigg)$
The x - 4 cancel out