Results 1 to 5 of 5

Math Help - Sqare root integral

  1. #1
    Junior Member
    Joined
    Jul 2008
    Posts
    40

    Sqare root integral

    Hello.
    This isn't in my curriculum so I've never seen it done before. When my book meets an integral like this in the various examples it refers to the calculator.

    I'd like to see how it is done, so please solve it step by step if you want to. :]

    \frac 12 \int_0^{10\pi}\left(\sqrt{t^2 + 1}\right)\rm{d}t
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor kalagota's Avatar
    Joined
    Oct 2007
    From
    Taguig City, Philippines
    Posts
    1,026
    you can do the general substitution rule.. \int u \ dv = uv - \int v \ du

    let
    u = \sqrt{t^2+1} \Rightarrow du = \frac{t}{\sqrt{t^2+1}}
    dv = dt \Rightarrow v=t

    so, \int {\sqrt{t^2+1}} \ dt = t\sqrt{t^2+1} - \int \frac{t^2}{\sqrt{t^2+1}} \ dt

    if you set t = \tan u \Rightarrow dt = \sec^2 u \ du

    the integral on the right side changes to

    \int \frac{\tan^2 u}{\sec u} \ du = \int \frac{\sin^2 u}{\cos} \ du ...

    **************************************************

    (another solution)
    or you can substitute \tan u = t from the start.. so, \sec^2 u \ du = dt

    \int {\sqrt{t^2+1}} \ dt = \int \sec^3 u \ du

    and you use \int \sec^n x \ dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int\sec^{n-2} x \ dx

    noting that \int \sec x \ dx = \ln |\sec x + \tan x| + C
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Jul 2008
    Posts
    40
    Cool!
    I see you use trigonometric substitution in both solutions. I will try to find some resources on that topic.

    Thanks a million for the solution (and your time), this seems to be a powerful way to solve many different integrals
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Jul 2008
    From
    Sofia, Bulgaria
    Posts
    75
    Hi there!

    I will suggest another solution:

    \displaystyle{\int}\sqrt{t^2+1}dt

    \cosh^2z-\sinh^2z=1
    \cosh^2z=\sinh^2z+1

    let t=\sinh z
    dt=\cosh zdz

    \displaystyle{\int}\sqrt{t^2+1}dt=\displaystyle{\i  nt}\cosh^2zdz

    \displaystyle{\int}\cosh^2zdz=\sinh z\cosh z-\displaystyle{\int}\sinh^2zdz=\sinh z\cosh z-\displaystyle{\int}(\cosh^2z-1)dz

    \displaystyle{\int}\cosh^2zdz=\sinh z\cosh z-\displaystyle{\int}\cosh^2zdz+z

    2\displaystyle{\int}\cosh^2zdz=\sinh z\cosh z+z

    \displaystyle{\int}\cosh^2zdz=\frac{\sinh z\cosh z+z}{2}+C

    resubstitution: t=\sinh z , \cosh z=\sqrt{1+\sinh^2z} and z={\rm}{arsinh}(t)

    or:

    \displaystyle{\int}\cosh^2zdz=\frac{\sinh z\cosh z+z}{2}+C=\frac{t\sqrt{1+t^2}+{\rm}{arsinh}(t)}{2}  +C


    So, hyp substitutions are also helpful, to me even easier to use
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member flyingsquirrel's Avatar
    Joined
    Apr 2008
    Posts
    802
    Hello,
    Quote Originally Posted by MatteNoob View Post
    I'd like to see how it is done, so please solve it step by step if you want to. :]

    \frac 12 \int_0^{10\pi}\left(\sqrt{t^2 + 1}\right)\rm{d}t
    Another approach, without substitution :
    \sqrt{t^2+1}=\sqrt{t^2+1}\cdot \frac{\sqrt{t^2+1}}{\sqrt{t^2+1}}=\frac{t^2+1}{\sq  rt{t^2+1}}=\frac{t^2}{\sqrt{t^2+1}}+\frac{1}{\sqrt  {t^2+1}}

    hence

    \begin{aligned}I=\frac 12 \int_0^{10\pi}\sqrt{t^2 + 1}\,\rm{d}t<br />
&=\frac 12 \int_0^{10\pi}\frac{t^2}{\sqrt{t^2 + 1}}\,\mathrm{d}t+\frac 12 \int_0^{10\pi}\frac{1}{\sqrt{t^2 + 1}}\,\mathrm{d}t\\<br />
&=\frac 12 \int_0^{10\pi}\frac{t^2}{\sqrt{t^2 + 1}}\,\mathrm{d}t+\frac{\mathrm{arcsinh} (10\pi)}{2}\end{aligned}

    Using integration by parts, ( u=t and v'=\frac{t}{\sqrt{t^2+1}}) :

    \int \frac{t^2}{\sqrt{t^2 + 1}}\,\mathrm{d}t=t\sqrt{t^2+1}-\int \sqrt{t^2+1}\,\mathrm{d}t

    hence

    I=\frac{t\sqrt{t^2+1}}{2} \Big{|}_0^{10\pi} - \underbrace{\frac 12\int_0^{10\pi} \sqrt{t^2+1}\,\mathrm{d}t}_{I}+\frac{\mathrm{arcsi  nh} (10\pi)}{2}

    \boxed{I=\frac{10\pi \sqrt{100\pi^2+1}+\mathrm{arcsinh} (10\pi)}{4}}
    Last edited by flyingsquirrel; August 23rd 2008 at 01:31 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. root integral question
    Posted in the Calculus Forum
    Replies: 9
    Last Post: June 25th 2011, 08:12 AM
  2. integral (square root)
    Posted in the Calculus Forum
    Replies: 3
    Last Post: September 10th 2010, 07:49 PM
  3. Replies: 4
    Last Post: June 30th 2010, 04:14 PM
  4. integral with square root
    Posted in the Calculus Forum
    Replies: 7
    Last Post: March 19th 2010, 12:28 PM
  5. how to solve this root integral
    Posted in the Calculus Forum
    Replies: 6
    Last Post: February 19th 2009, 06:09 AM

Search Tags


/mathhelpforum @mathhelpforum