Ok, I need to solve this:

$\displaystyle 0 = \frac{(\sqrt {1 - x^2}) \arccos{x} - (1 + x^2) \arctan{x}}{(1 + x)(\sqrt{1 - x^2})}$

by the Newton-Raphson method.

So do I take the derivative of

$\displaystyle 0 = \frac{(\sqrt {1 - x^2}) \arccos{x} - (1 + x^2) \arctan{x}}{(1 + x)(\sqrt{1 - x^2})}$

or of

$\displaystyle 0 = (\sqrt {1 - x^2}) \arccos{x} - (1 + x^2) \arctan{x}$ ?

Please say it's the latter. If I have to take it on the first, I think I will go mad.