1. ## Inverse Laplace Transform

I need help finding the inverse laplace transform of

$\frac {8s^2-4s+12}{s(s^2+4)}
$

and

$\frac {1-2s}{s^2+4s+5}$

Thank You

2. Originally Posted by hercules
I need help finding the inverse laplace transform of

$\frac {8s^2-4s+12}{s(s^2+4)}
$

By partial fractions, we can write this as:

$\frac 3s + \frac {5s - 4}{s^2 + 4}$

or, in other words:

$3 \cdot {\color{red} \frac 1s} + 5 \cdot {\color{red} \frac s{s^2 + 2^2}} - 2 \cdot { \color{red}\frac 2{s^2 + 2^2}}$

now just look up the rules in the table of your text. what are the inverse Laplace transforms for the guys in red?

and

$\frac {1-2s}{s^2+4s+5}$

Thank You
with some algebraic manipulation (completing the square of the denominator, factoring out a minus 1 from the numerator and writing -1 as 4 - 5) we find that this expression is:

$-2 \cdot {\color{red}\frac {s + 2}{(s + 2)^2 + 1}} + 5 \cdot {\color{red} \frac 1{(s + 2)^2 + 1}}$

now this is the same story as the last one. look up the transforms in the table in your text

3. Originally Posted by hercules
I need help finding the inverse laplace transform of

$\frac {8s^2-4s+12}{s(s^2+4)}
$
You can write, $\tfrac{3}{s} + \tfrac{5s}{s^2+4} - 2\cdot \tfrac{2}{s^2+4}$.
Now just recognize the forms, $3+5\cos (2x) - 2 \sin (2x)$.

4. Originally Posted by hercules
I need help finding the inverse laplace transform of

$\frac {8s^2-4s+12}{s(s^2+4)}$

and

$\frac {1-2s}{s^2+4s+5}$

Thank You
by partial fractions (work not shown) we get

$\frac{8s^2-4s+12}{s(s^2+4)}=\frac{3}{s}+\frac{5s-4}{(s^2+4)}=3\frac{1}{s}+5\frac{s}{s^2+4}+2\frac{2 }{s^2+4}$

now taking the inverse transform we get

$\mathcal{L}^{-1}\{ 3\frac{1}{s}+5\frac{s}{s^2+4}+2\frac{2}{s^2+4}\}=$

by the linearity property we get

$3\mathcal{L}^{-1}\{ \frac{1}{s}\} +5\mathcal{L}^{-1}\{ \frac{s}{s^2+4}\}+2\mathcal{L}^{-1}\{ \frac{2}{s^2+4}\} =3+5\cos(2t)+2\sin(2t)$

Edit: late again

5. Originally Posted by hercules
I need help finding the inverse laplace transform of

$\frac {8s^2-4s+12}{s(s^2+4)}
$

and

$\frac {1-2s}{s^2+4s+5}$

Thank You
Hi! I'll be omitting $\theta(t)$, the Heaviside step function, in this post.

Assuming you know how to do partial fraction expansion we have:

$
\frac{8s^2-4s+12}{s(s^2+4)}
= 3\frac1s + \frac{5s-4}{s^2-2^2}
= \frac3s + 5\frac{s}{s^2-2^2} - 2\frac2{s^2-2^2}
$

and knowing these transformation pairs:

$\mathcal{L}^{-1}\left\{\frac1s\right\}=1$
$\mathcal{L}^{-1}\left\{\frac{\omega}{s^2+\omega^2}\right\}=\sin( \omega t)$
$\mathcal{L}^{-1}\left\{\frac{s}{s^2+\omega^2}\right\}=\cos(\omeg a t)$

we have

$\mathcal{L}^{-1}\left\{3\frac1s + 5\frac{s}{s^2-2^2} - 2\frac2{s^2-2^2}\right\}
= 3\mathcal{L}^{-1}\left\{\frac1s\right\}
+5\mathcal{L}^{-1}\left\{\frac{s}{s^2-2^2}\right\}
-2\mathcal{L}^{-1}\left\{\frac2{s^2-2^2}\right\}
$
$=3+5\cos(2t)-2\sin(2t)$

Edit: Wow, some guys are too fast for me!