Results 1 to 3 of 3

Math Help - problem of power series

  1. #1
    Newbie
    Joined
    May 2008
    Posts
    11

    problem of power series

    1)Prove that
    1)1+ 1/2! + 1.3/4! + 1.3.5/6! + =e^1/2
    2) 2) Evaluate the series
    1 + 3/1! + 5/2! + 7/3! + .
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Flow Master
    mr fantastic's Avatar
    Joined
    Dec 2007
    From
    Zeitgeist
    Posts
    16,948
    Thanks
    5
    Quote Originally Posted by somnath6088 View Post
    1)Prove that
    1)1+ 1/2! + 1.3/4! + 1.3.5/6! + ……………………=e^1/2
    2) 2) Evaluate the series
    1 + 3/1! + 5/2! + 7/3! + …………………………….
    Both problems rely on you using the power series e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + .... + \frac{x^n}{n!} + ..... = \sum_{n=0}^{\infty} \frac{x^n}{n!}.

    1) Substitute x = \frac{1}{2} and play around a little bit.

    2) The series can be written \sum_{n=0}^{\infty} \frac{(2n+1)}{n!} = 2 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} + \sum_{n=0}^{\infty} \frac{1}{n!} = 2 \sum_{m=0}^{\infty} \frac{1}{m!} + \sum_{n=0}^{\infty} \frac{1}{n!} = 2 e^1 + e^1 = 3 e.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,866
    Thanks
    745
    Hello, somnath6088!

    mr fantastic has the best approach to #1 . . .
    . . I did it head-on.
    We know that: . e^x\;=\;1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \hdots


    Prove that: . 1+ \frac{1}{2!} + \frac{1\cdot3}{4!} + \frac{1\cdot3\cdot5}{6!} + \frac{1\cdot3\cdot5\cdot7}{8!}+ \hdots \:=\:e^{\frac{1}{2}}
    Reduce the fractions . . .

    S \;=\;1 + \frac{1}{2} + \frac{1}{2\cdot4} + \frac{1}{2\cdot4\cdot6} + \frac{1}{2\cdot4\cdot6\cdot8} + \hdots

    . . = \;1 + \frac{1}{2(1)} + \frac{1}{2^2(1\cdot2)} + \frac{1}{2^3(1\cdot2\cdot3)} + \frac{1}{2^4(1\cdot2\cdot3\cdot4)} + \hdots

    . . = \;1 + \frac{\frac{1}{2}}{1!} + \frac{(\frac{1}{2})^2}{2!}       + \frac{(\frac{1}{2})^3}{3!} + \frac{(\frac{1}{2})^4}{4!} + \hdots


    And this is the infinite series for: . e^{\frac{1}{2}}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Power Series Problem
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 19th 2009, 03:52 PM
  2. Power Series Problem
    Posted in the Calculus Forum
    Replies: 2
    Last Post: November 7th 2008, 06:21 PM
  3. power series problem.
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 19th 2007, 11:28 PM
  4. sum of power series problem
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 17th 2007, 10:27 PM
  5. Power Series problem
    Posted in the Calculus Forum
    Replies: 1
    Last Post: November 28th 2006, 06:00 PM

Search Tags


/mathhelpforum @mathhelpforum