# curve sketching

• Jun 17th 2008, 09:26 AM
JMV
curve sketching
if someone could show me all the steps to curve sketch y=3xe^-x that would be greatly appreciated!(Doh)
• Jun 17th 2008, 10:01 AM
Reckoner
Quote:

Originally Posted by JMV
if someone could show me all the steps to curve sketch y=3xe^-x that would be greatly appreciated!(Doh)

My suggestions:

-Try to determine the domain and range of the function

-Find the $x$- and $y$- intercepts (if any)

-Find the derivative and determine where the function is increasing and decreasing

-Find the critical numbers of $f$ and use the first derivative test to find relative extrema

-Find second derivative and determine concavity and inflection points

-Sketch a few other points as needed

In this case, we have:

-Domain: $f(x)$ is defined for all real $x$, so our domain is the entire real line

-Intercepts:

$3xe^{-x} = \frac{3x}{e^x} = 0$

$\Rightarrow 3x = 0\Rightarrow x = 0$

so our only intercept is at $(0, 0)$.

-Increasing/decreasing and extrema:

$f'(x) = (3x)\left(-e^{-x}\right) + e^{-x}(3) = 3e^{-x}(1 - x)$

Note that $f'$ is defined everywhere. Setting $f'(x) = 0$, we have

$3e^{-x}(1 - x) = 0\Rightarrow3(1 - x) = 0\Rightarrow x = 1$

and $f$ has one critical point, at $\left(1,\;\frac3e\right)$. By testing $f'$ on the intervals $(-\infty,\;1)$ and $(1,\;\infty)$, you should be able to determine that $f$ is increasing over the first interval and decreasing over the second, so this point is a relative maximum (and in fact it is an absolute maximum).

-Concavity and inflection points:

Differentiate: $f''(x) = 3e^{-x}(-1) + (1 - x)\left(-3e^{-x}\right) = 3e^{-x}(x - 2)$

So we have a possible inflection point at $x = 2$. Testing the intervals, you should find that $f''(x) < 0\;\forall x\in(-\infty,\;2)$ (concave down) and $f''(x) > 0\;\forall x\in(2,\;\infty)$ (concave up). Thus $\left(2,\;\frac6{e^2}\right)$ is an inflection point.

Plot the appropriate points, and use the concavity and intervals of increasing/decreasing values to sketch the graph.
• Jun 17th 2008, 11:03 AM
Soroban
Hello, JMV!

Quote:

Graph: . $y \:=\:3xe^-x$
The only intercept is the origin: (0, 0).

The function is: . $y \:=\:\frac{3x}{e^x}$

Since $e^x \neq 0$, there are no vertical asymptotes.

Since $\lim_{x\to\infty}\frac{3x}{e^x} \:=\:0$, the horizontal asymptote is: . $y \:=\:0$ (x-axis)

First derivative: . $y' \:=\:-3xe^{-x} + 3x^{-x} \:=\:3e^{-x}(1-x) \:=\:\frac{3(1-x)}{e^x}$

We see that: for $x = 1$, horizontal tangent (critical point).
. . For $x < 1,\:y' > 0$ ... graph is rising (up to the critical point)
. . For $x > 1,\:y' < 0$ ... graph is falling (down to the x-axis)

When $x = 1,\:y \:=\:\frac{3}{2} \:\approx\:1.1$ . . . We have the point (1, 1.1)
Code:

            |             |              o             |        *        *             |    *                    *             | *                                *       - - - * - - - - - - - - - - - - - - - - - - - -           * |         *  |             |         *  |             |
We can examine the second derivative.

It simplifies to: . $y'' \:=\:\frac{3(x-2)}{e^{2x}}$

. . For $x < 2,\:y'' < 0$, concave down

. . At $x = 2,\:y'' = 0$, inflection point at about (2, 0.8)

. . For $x > 2,\:y'' > 0$, concave up

All of which agrees with my sketch . . . whew!

• Jun 17th 2008, 11:09 AM
Mathstud28
Quote:

Originally Posted by Soroban

When $x = 1,\:y \:=\:\frac{3}{2} \:\approx\:1.1$ . . . We have the point (1, 1.1)

..