1) a, b and c are in R^3, and they form an orthogonal base.

I need to prove that, for every diffrential function in "p", f: R^3-->R:

(df/d(a) (p))^2 + (df/d(b) (p))^2 + (df/d(c) (p))^2 = (df/dx (p))^2 + (df/dy (p))^2 + (df/dz (p))^2

Note that these are thedirectional derivatives. a, b and c are vectors of course, and they are all calculated in point "p", where f is diffrential.

I'm playing with it, but I don't get anything... looks kinda easy, but I dunno.

2) This looks even easier, but I'm just not seeing it:

prove that if f is a homogeneous function of order k (=> f(tx) = t^kf(x) ), then the partial derivatives of f are homogenous of order k-1.

I'll keep trying those two, but I'm having so much deadlines, I figured I better not waste time and write here... usually takes some time 'till I get a response anyway (not that I complain!!!)

If I make any progress with these I'll let you know.

THANK YOU VERY MUCH!!!! You are all wonderful to help like that!