# Thread: An Integral

1. ## An Integral

It's been a while since I did integrals, and i'm having trouble with this problem.

√( (2t)^2 + (t^-2) + (4) ) And the integral goes from 1 to e

Is there an easier way I can simplify the stuff under the square root, in order to make this less messy? Or do I have to go straight to substitution? And if so, whats the best way to start? Thanks for your time.

2. Originally Posted by zellster87 It's been a while since I did integrals, and i'm having trouble with this problem.

√( (2t)^2 + (t^-2) + (4) ) And the integral goes from 1 to e

Is there an easier way I can simplify the stuff under the square root, in order to make this less messy? Or do I have to go straight to substitution? And if so, whats the best way to start? Thanks for your time.
$\displaystyle \int(2t)^2+t^{-2}+4dt$

simplifying to

$\displaystyle \int{4t^2+t^{-2}+4dt}=\frac{4}{3}t^3-t^{-1}+4t+C$

3. Originally Posted by zellster87 It's been a while since I did integrals, and i'm having trouble with this problem.

√( (2t)^2 + (t^-2) + (4) ) And the integral goes from 1 to e

Is there an easier way I can simplify the stuff under the square root, in order to make this less messy? Or do I have to go straight to substitution? And if so, whats the best way to start? Thanks for your time.
Start by noting that
$\displaystyle 4t^2 + \frac{1}{t^2} + 4$
is a perfect square.

Hint: It is of the form
$\displaystyle \left ( at + \frac{b}{t} \right )^2$

-Dan

4. Originally Posted by Mathstud28 $\displaystyle \int(2t)^2+t^{-2}+4dt$

simplifying to

$\displaystyle \int{4t^2+t^{-2}+4dt}=\frac{4}{3}t^3-t^{-1}+4t+C$
You left off the square root.

-Dan

5. Not big deal, since $\displaystyle \sqrt{4t^{2}+\frac{1}{t^{2}}+4}=\frac{\sqrt{4t^{4} +4t^{2}+1}}{t}=\frac{2t^{2}+1}{t}.$

Mathstud28 misread the problem.

6. Originally Posted by topsquark You left off the square root.

-Dan
where is there a...oh...sorry...its hard to see those little things

7. first of all, the 1st term inside the root is it (2t)^2 or just 2t^2, if there is a bracket round 2t then you have to make it to 4t^2

edit: wait, my mistake I'm just being stupid lol

8. Originally Posted by topsquark Start by noting that
$\displaystyle 4t^2 + \frac{1}{t^2} + 4$
is a perfect square.

Hint: It is of the form
$\displaystyle \left ( at + \frac{b}{t} \right )^2$

-Dan
Thanks for the quick replies guy, I really appreciate it.

Now when I take the integral of (2t^2 + 1) / t from 1 to e

I simplified it to ∫ 2t^2 / t + 1/t dt -----> ∫2t + t^-1 dt

But I have a problem with the "t^-1" term when I take the anti-derivative of it. It comes out as t^0 / 0 which cant be right. Did i simplify this wrong?

Thanks

9. Originally Posted by zellster87 Thanks for the quick replies guy, I really appreciate it.

Now when I take the integral of (2t^2 + 1) / t from 1 to e

I simplified it to ∫ 2t^2 / t + 1/t dt -----> ∫2t + t^-1 dt

But I have a problem with the "t^-1" term when I take the anti-derivative of it. It comes out as t^0 / 0 which cant be right. Did i simplify this wrong?

Thanks
$\displaystyle \int \frac{dt}{t} = ln|t| + C$

-Dan

10. Woah, I really am rusty. Thanks for you help guys.

#### Search Tags

integral 