Hello,
How do you go about finding the Fourier transform of $\displaystyle e^{-2|t-1|}$. Specifically how do you deal with the | . | part.
Chris
You need to calculate,
$\displaystyle F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t\omega} dt$.Break the integral,
$\displaystyle \int_{-\infty}^{1}e^{2(t-1)} e^{-2\pi i t\omega} dt + \int_1^{\infty} e^{-2(t-1)} e^{-2\pi i t\omega} dt$.And now compute each one seperately.