1. Area between curves

How would i find the area between the curves y=cosx, the y axis and the lines y =1/2 and y=srt3/2......i keep getting (pi(2-srt3)-6(-1+srt3))/12 but i doubt this is right can someone do it please thanks nath

2. Your answer is correct, apart from the sign mistake (you get approx -0.296 while it should be +0.296).

3. Hello, Nath!

Your answrer is negative . . . otherwise, excellent work!

How would i find the area between the curves $\displaystyle y = \cos x$, the $\displaystyle y$-axis
and the lines $\displaystyle y = \frac{1}{2}$ and $\displaystyle y = \frac{\sqrt{3}}{2}$
i keep getting: $\displaystyle \frac{\pi(2 - \sqrt{3}) - 6(-1 + \sqrt{3})}{12}$ . . . but i doubt this is right.
Code:
        |
* *
_   |     *
√3/2 + - - - -*- -
|::::::::::*
1/2 + - - - - - * - -
|
--+------------*---
|           π/2
I did it "sideways" . . . with respect to $\displaystyle y$.

We have: .$\displaystyle y = \cos x\quad\Rightarrow\quad x = \arccos y$

The area is: .$\displaystyle A \;= \;\int^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}} \arccos y\ dy$

This integral can be done by-parts . . . or from a standard formula.

We get: .$\displaystyle A \;= \;y\cdot\arccos y - \sqrt{1 - y^2}\:\bigg|^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}$

We have: .$\displaystyle \left[\frac{\sqrt{3}}{2}\cdot\arccos\frac{\sqrt{3}}{2} - \sqrt{1 - \left(\frac{\sqrt{3}}{2}\right)^2} \right]$$\displaystyle -$$\displaystyle \left[\frac{1}{2}\cdot\arccos\frac{1}{2} - \sqrt{1 - \left(\frac{1}{2}\right)^2}\right]$

. . . $\displaystyle = \;\left[\frac{\sqrt{3}}{2}\cdot\frac{\pi}{6} - \frac{1}{2}\right] - \left[\frac{1}{2}\cdot\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right] \;=$ .$\displaystyle \frac{\pi\sqrt{3}}{12} - \frac{1}{2} - \frac{\pi}{6} + \frac{\sqrt{3}}{2}$

. . . $\displaystyle = \;\frac{\pi\sqrt{3}}{12} - \frac{6}{12} - \frac{2\pi}{12} + \frac{6\sqrt{3}}{12} \;=$ .$\displaystyle \frac{\pi\sqrt{3} - 2\pi - 6 + 6\sqrt{3}}{12}$

Therefore: .$\displaystyle A\;=\;\frac{\pi(\sqrt{3} - 2) + 6(\sqrt{3} - 1)}{12}$ . . . ta-DAA!

4. Thanks i see my mistake for some reason i switched the terminals