Solve the following integral
![]()
Also $\displaystyle \forall{x}\in(0,1],\frac{1}{1-x^2}>\frac{1}{x^2}$
So then $\displaystyle \int_0^{1}\frac{1}{x^2}dx\leq\int_0^{1}\frac{1}{1-x^2}dx$
$\displaystyle \int_0^{1}\frac{dx}{x^2}$ is a divergent special case p-series test
So from that we see that $\displaystyle \int_0^{1}\frac{dx}{1-x^2}$ diverges