# stationary points of a function of 2 variables

• May 10th 2008, 09:38 AM
a1007
stationary points of a function of 2 variables
hey i have this problem where

z = xy(6-x-y) when multiplying out and differentiating with respect to x i get:

dz/dx = 6y - 2xy -y^2 and y dz/dy = 6x - x^2 - 2xy

I understand with the -2xy you can make the equations equal and find stationary points, which i got as (0,0) (6,0) and (0,6) but once checking the answers there was a further point (2,2) and I don't understand on how to obtain this stationary point, help would be much appreciated than you :)
• May 10th 2008, 10:52 AM
Soroban
Hello, a1007!

Quote:

$z \:= \:xy(6-x-y)$
We have: . $\begin{array}{cccccc}z_x &=& 6y - 2xy -y^2 &=& 0 \\ z_y &=&6x - x^2 - 2xy &=& 0 \end{array}$

Subtract the equations: . $x^2-y^2 - 6x + 6y \:=\:0$

Factor: . $(x-y)(x+y) - 6(x-y) \:=\:0 \quad\Rightarrow\quad (x-y)(x+y-6)\:=\:0$

We have two cases to consider: . $\begin{array}{ccccccc}x-y \:=\: 0 & \Rightarrow & y \:=\:x & {\color{blue}[1]}\\ x+y-6 \:=\: 0 & \Rightarrow & y \:=\: 6-x & {\color{blue}[2]}\end{array}$

Substitute [1] into $z_x\!:\;\;6x - 2x^2-x^2\:=\:0\quad\Rightarrow\quad 6x-3x^2\:=\:0 \quad\Rightarrow\quad 3x(2-x) \:=\:0$

. . Hence: . $x \:=\:0,\,2\quad\Rightarrow\quad y \:=\:0,\,2 \quad\Rightarrow\quad\boxed{ (0,0),\:(2,2)}$

Substitute [2] into $z_x\!:\;\;6(6-x)-2x(6-x)-(6-x)^2\:=\:0\quad\Rightarrow\quad 3x(x-6) \:=\:0$

. . Hence: . $x \:=\:0,\,6\quad\Rightarrow\quad y \:=\:6,\,0\quad\Rightarrow\quad\boxed{ (6,0),\:(0,6)}$

• May 10th 2008, 11:38 AM
a1007
Thanx! made it look so easy :)