Results 1 to 2 of 2

Math Help - related rates and optimization problems

  1. #1
    Newbie
    Joined
    Apr 2008
    Posts
    7

    related rates and optimization problems

    1.A spotlight is on the ground 100 feet from a building that has vertical sides. A person 6 feet tall starts at the spotlight and walkd directly towards the building at a rate of 5 feet per second.
    a) how fast is the top of the persons shadow moving down the building when the person is 50 feet away.
    b) how fast is the top of the persons shadow moving down the building when the person is 25 feet away.



    2. A spherical ball 8 inches in diameter is coated with a layer of ice of uniform thickness. If the ice melts at the rate of 10in3/min, how fast is the thickness of the ice descresing whe it is 2 inches thick?


    3. An open box with a capcity of 36,000 cubic inches is to be twice as long as it is wide. the material for the box costs 10 cents per square foot. what are the dimensions of the least expensive box? how much does it cost?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,909
    Thanks
    771
    Hello, qu2010!

    1. A spotlight is on the ground 100 feet from a vertical building.
    A 6-foot man starts at the spotlight and walks towards the building at 5 ft/sec.
    Code:
        C *
          |   *   A
          |       *
        y |       |   *
          |       |6      *
          |       |           *
          * - - - * - - - - - - - * - -
          D   x   B     100-x     L
          : - - - - 100 - - - - - :

    The spotlight is at L.
    The man is: . AB = 6
    His shadow is: . y = CD
    His distance from the building is: . x \,=\,DB
    . . Hence: . BL \:=\:100-x
    We are given: . \frac{dx}{dt} = -5 ft/sec.

    From similar right triangles CDL\text{ and }ABL\text{ we have: }\:\frac{y}{100} \:=\:\frac{6}{100-x}

    . . Then: . y \:=\:600(100-x)^{-1}

    Differentiate with respect to time: . \frac{dy}{dt} \:=\:-600(100-x)^{-2}\left(-\frac{dx}{dt}\right)

    . . and we have: . \boxed{\frac{dy}{dt} \;=\;\frac{600}{(100-x)^2}\,\frac{dx}{dt}}



    a) How fast is the top of the man's shadow moving down the building
    when he is 50 feet from the building?
    When x = 50 . . .

    . . \frac{dy}{dt} \;=\;\frac{600}{(100-50)^2}\,(-5) \;=\;\boxed{-\frac{6}{5}\text{ ft/sec}}



    b) How fast is the top of the man's shadow moving down the building
    when he is 25 feet from the building?
    When x = 25 . . .

    . . \frac{dy}{dt} \;=\;\frac{600}{(100-25)^2}\,(-5) \;=\;\boxed{-\frac{8}{15}\text{ ft/sec}}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. related rates problems..
    Posted in the Calculus Forum
    Replies: 10
    Last Post: August 30th 2010, 09:29 PM
  2. Replies: 2
    Last Post: June 28th 2009, 09:57 PM
  3. Related Rates problems
    Posted in the Calculus Forum
    Replies: 7
    Last Post: December 7th 2008, 04:18 AM
  4. Related Rates Problems Please Help!!!
    Posted in the Calculus Forum
    Replies: 4
    Last Post: January 17th 2008, 05:39 PM
  5. Related Rates Problems
    Posted in the Calculus Forum
    Replies: 9
    Last Post: November 29th 2007, 10:36 AM

Search Tags


/mathhelpforum @mathhelpforum