Originally Posted by

**elizsimca** Okay everyone, I'm sure this is a simple fix but let's see if I'm on the right track:

We have been given a "project" to "prove" that the length of one complete arc of a cycloid generated by a circle of radius *a*, equals the perimeter of a square that circumscribes the same circle. I know that the answer to my integral should be 8|*a|*, but it is not coming out that way. I know that I have made an error somewhere but I just can't seem to find it!

Assume *a* is a constant:

$\displaystyle f(t)=x=at-a\sin{t}$

$\displaystyle g(t)=y=a-a\cos{t}$

$\displaystyle 0\leq{t}\leq{2\pi}$

$\displaystyle f'(t)=a-a\cos{t}$

$\displaystyle g'(t)=a\sin{t}$

$\displaystyle L=\int_{0}^{2\pi}\sqrt{(f'(t))^2+(g'(t))^2}$ $\displaystyle dt$

$\displaystyle L=\int_{0}^{2\pi}\sqrt{(a-a\cos{t})^2+(a\sin{t})^2}$ $\displaystyle dt$

$\displaystyle L=\int_{0}^{2\pi}\sqrt{a^2-2a^2\cos^2{t}+a^2\cos^2{t}+a^2\sin^2{t}}$ $\displaystyle dt$

$\displaystyle L=\int_{0}^{2\pi}\sqrt{2a^2-2a^2\cos^2{t}}$ $\displaystyle dt$

$\displaystyle L=\int_{0}^{2\pi}\sqrt{2a^2(1-\cos^2{t})}$ $\displaystyle dt$

$\displaystyle L=\sqrt{2}|a|\int_{0}^{2\pi}\sqrt{(1-\cos^2{t})}$ $\displaystyle dt$

$\displaystyle L=\sqrt{2}|a|\int_{0}^{2\pi}\sqrt{(sin^2{t})}$ $\displaystyle dt$

$\displaystyle L=\sqrt{2}|a|\int_{0}^{2\pi}|\sin{t}|$ $\displaystyle dt$

$\displaystyle |\sin{t}|$ $\displaystyle =$ $\displaystyle \sin{t}$ for $\displaystyle t $ $\displaystyle \epsilon$ $\displaystyle [0,\pi]$

$\displaystyle |\sin{t}|$ $\displaystyle =$ $\displaystyle -\sin{t}$ for $\displaystyle t $ $\displaystyle \epsilon$ $\displaystyle [\pi,2\pi]$

$\displaystyle L=\sqrt{2}|a|\int_{0}^{\pi}\sin{t}$ $\displaystyle dt$ + $\displaystyle \sqrt{2}|a|\int_{\pi}^{2\pi}-\sin{t}$ $\displaystyle dt$

$\displaystyle L=\sqrt{2}|a|(-\cos{t})]_0^\pi$ + $\displaystyle \sqrt{2}|a|(\cos{t})]_\pi^{2\pi}$

$\displaystyle L=\sqrt{2}|a|(-(-1)-(-1))+\sqrt{2}|a|(1-(-1))$

$\displaystyle L=4\sqrt{2}|a|$

It's evident that I should not have a $\displaystyle \sqrt{2}$, instead I should have just 2 outside the integral. Right?