# Thread: show its integral less than half M

1. ## show its integral less than half M

suppose
f: R--->R has a continuous derivative, f(0)=0, and |f'(x)|<=M for x in [0,1]

show that, |integral(f,0,1)|<= half M

show that, if given f(1)=0, then |integral(f,0,1)|<= quarter M

what could you say if |f'(x)|<= Mx?

2. Originally Posted by szpengchao
suppose
f: R--->R has a continuous derivative, f(0)=0, and |f'(x)|<=M for x in [0,1]

show that, |integral(f,0,1)|<= half M

show that, if given f(1)=0, then |integral(f,0,1)|<= quarter M

what could you say if |f'(x)|<= Mx?
$
\left| {f'\left( x \right)} \right| \leqslant M \Leftrightarrow - M \leqslant f'\left( x \right) \leqslant M
$

Integrating: $
- M \leqslant f'\left( x \right) \leqslant M \Rightarrow \int_0^t { (- M)dx} \leqslant \int_0^t {f'\left( x \right)dx} \leqslant \int_0^t {Mdx}
$
whenever $
0 \leqslant t \leqslant 1
$

By the FTC: $
\int_0^t {f'\left( x \right)dx} = f\left( t \right) - f\left( 0 \right)
$

Thus: $
\left( { - M} \right) \cdot t \leqslant f\left( t \right) - f\left( 0 \right) \leqslant M \cdot t

$

Integrating again: $
\left( { - M} \right) \cdot \int_0^1 {t \cdot dt} \leqslant \int_0^1 {f\left( t \right) \cdot dt} - \int_0^1 {f\left( 0 \right) \cdot dt} \leqslant M \cdot \int_0^1 {t \cdot dt}
$

Therefore: $
\left( {\tfrac{{ - M}}
{2}} \right) \leqslant \int_0^1 {f\left( t \right) \cdot dt} - f\left( 0 \right) \leqslant \left( {\tfrac{M}
{2}} \right)
$

Since $f(0)=0$ we get the desired result

All the other parts are similar, try to do them and then ask if you still have doubts.

1

3. ## how can u get the second ques?

Originally Posted by PaulRS
$
\left| {f'\left( x \right)} \right| \leqslant M \Leftrightarrow - M \leqslant f'\left( x \right) \leqslant M
$

Integrating: $
- M \leqslant f'\left( x \right) \leqslant M \Rightarrow \int_0^t { (- M)dx} \leqslant \int_0^t {f'\left( x \right)dx} \leqslant \int_0^t {Mdx}
$
whenever $
0 \leqslant t \leqslant 1
$

By the FTC: $
\int_0^t {f'\left( x \right)dx} = f\left( t \right) - f\left( 0 \right)
$

Thus: $
\left( { - M} \right) \cdot t \leqslant f\left( t \right) - f\left( 0 \right) \leqslant M \cdot t

$

Integrating again: $
\left( { - M} \right) \cdot \int_0^1 {t \cdot dt} \leqslant \int_0^1 {f\left( t \right) \cdot dt} - \int_0^1 {f\left( 0 \right) \cdot dt} \leqslant M \cdot \int_0^1 {t \cdot dt}
$

Therefore: $
\left( {\tfrac{{ - M}}
{2}} \right) \leqslant \int_0^1 {f\left( t \right) \cdot dt} - f\left( 0 \right) \leqslant \left( {\tfrac{M}
{2}} \right)
$

Since $f(0)=0$ we get the desired result

All the other parts are similar, try to do them and then ask if you still have doubts.

1

how can u get the second ques?