Page 1 of 2 12 LastLast
Results 1 to 15 of 30

Math Help - Integration by Parts the Adult Way

  1. #1
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9

    Integration by Parts the Adult Way

    A lot of people do integration by parts by defining the variables u=... and v'=... and flip them around.

    There is a more adult way of doing this, which looks nicer and is a lot faster.

    Say we have the integral, \int xe^x dx
    The idea is to turn one of the factors into a derivative. For example, we know that (e^x)' = e^x.

    Thus, we can think of the integral as,
    \int x \left( e^x \right) ' dx

    The next step is to take the function inside the differenciation operator and multiply it with the function unaffected with the differenciation and multiply them together. That is the uv part that you get.

    Thus, we get xe^x - \int ...

    The next step is to take the derivative of the function which was unaffected by differenciation and multiply it by the function inside the differenciation sign. This is our u'v part.

    In this case we get, xe^x - \int (x) ' e^x dx = xe^x - e^x + C.
    -----
    Here is another example,
    \int \ln x dx = \int \ln x \left( x \right) ' dx = x\ln x - \int 1 dx = x\ln x - x + C.
    Look how fast that is.

    Here is another example,
    \int x^2 \sin 2x dx = \int x^2 \left( -\frac{1}{2} \cos 2x \right) ' dx = -\frac{1}{2}x^2 \cos 2x + \int x\cos 2x dx
    =-\frac{1}{2}x^2\cos 2x + \int x \left( \frac{1}{2} \sin 2x \right)' dx = - \frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx = -\frac{1}{2}x^2 \cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C

    My point is that it is a lot easier to keep track of everything doing integration this way. Because you do not need to go out of your way to write u and v'.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,086
    Thanks
    375
    Awards
    1
    Quote Originally Posted by ThePerfectHacker View Post
    My point is that it is a lot easier to keep track of everything doing integration this way. Because you do not need to go out of your way to write u and v'.
    I agree and I think this is quite a clever observation. However, from an educational standpoint, I think teaching this to a student who has never seen integration by parts, ie. Freshman level college, would be a mistake. The students would not likely be able to follow the "reverse product rule" formulation that you worked out.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,654
    Thanks
    13
    Quote Originally Posted by topsquark View Post
    I think teaching this to a student who has never seen integration by parts, ie. Freshman level college, would be a mistake.
    That's pretty obvious. This method is mechanical, it's for people who have covered integration by parts. (I'm not sayin' the method doesn't work, I'm answering to Dan's post.)

    The method is cool and I recently translated to post it in my spanish forum. (Not mine, of course.)
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Jan 2008
    Posts
    588
    Thanks
    87
    Quote Originally Posted by topsquark View Post
    I agree and I think this is quite a clever observation. However, from an educational standpoint, I think teaching this to a student who has never seen integration by parts, ie. Freshman level college, would be a mistake. The students would not likely be able to follow the "reverse product rule" formulation that you worked out.

    -Dan
    I was taught integration by parts this way... I'm in the 11th grade. What is the other way of doing this?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by ThePerfectHacker View Post
    Here is another example,
    \int \ln x dx = \int \ln x \left( x \right) ' dx = x\ln x - \int 1 dx = x\ln x - x + C.
    Look how fast that is.
    We already do it this way with problems like this.

    Basically it seems your just skipping the writing of "Let u = ...", and doing that part in your head. I do it often too. (I'm lazy! )

    EDIT: No not quite skipping it... But I see what you're doing. It is much faster.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6
    Well, i agree with topsquark's message, it jumps steps for people who learn it (generally).

    Another way to do it is to put f(x) g'(x) dx = f(x) d(g(x)) but it's quite too far for me to remember how the teacher made it...
    Some kind of g(x)d(f(x))
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    I also want to add if you have limits of integration you just carry them through. For example,
    \int_0^{\pi} x\cos x dx = \int_0^{\pi} x \left( \sin x \right)' dx = x\sin x \bigg|_0^{\pi} - \int_0^{\pi} \sin x dx = \mbox{ whatever}.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Junior Member
    Joined
    Mar 2008
    Posts
    39
    Awards
    1
    Dear Perfect H:

    I like your method of integration by parts a lot. I haven't tested it yet, so I am still left with one question: is this a complete replacement for u substitution? If so I am very pleased!

    Another thing I'm wondering is, are there ever cases in which we can't do the first step, i.e. in which we can't turn one of the factors into a (solvable) derivative? If so, what then?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    GAMMA Mathematics
    colby2152's Avatar
    Joined
    Nov 2007
    From
    Alexandria, VA
    Posts
    1,172
    Awards
    1
    TPH,

    I like the explanation, and like any alternate method or shortcut, it is meant to be learned by the student after they learned the rigorous theorem in the text. Cheers!

    -Colby
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Member
    Joined
    Aug 2007
    Posts
    144
    Nice, however I'll stick to the original method for my exam
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Super Member wingless's Avatar
    Joined
    Dec 2007
    From
    Istanbul
    Posts
    585
    Quote Originally Posted by Boris B View Post
    Dear Perfect H:

    I like your method of integration by parts a lot. I haven't tested it yet, so I am still left with one question: is this a complete replacement for u substitution? If so I am very pleased!

    Another thing I'm wondering is, are there ever cases in which we can't do the first step, i.e. in which we can't turn one of the factors into a (solvable) derivative? If so, what then?
    This is another way to do integration by parts, not u substitution (Well, integration by parts includes u substitution). This method is the same as the normal integration by parts, but here we don't have to write u, v, du, dv. If there's an insoluble case, then it means integration by parts can't be used there.

    There's also tabular integration (tic-tac-toe method) which makes it easier to work with the cases where you need to apply integration by parts more than once.
    Follow Math Help Forum on Facebook and Google+

  12. #12
    Junior Member
    Joined
    Mar 2008
    Posts
    39
    Awards
    1
    I think I've been using this formula wrong. Do we ever actually take the derivative of the thing we originally turned into the derivative? This would be clearer if the example hadn't used a base e exponent; I think that is what may be screwing me up.

    I tried to take the antiderivative of:
    f(x) = \frac{2.5(200)^{2.5}}{x^{3.5}}<br />
    First I decided that I could take the derivative of x^{3.5}. Since it was in the denominator first, I had to turned into a x^{-3.5} and make it part of the numerator. Then I multiplied that by 2.5(200)^{2.5}
    2.5(200)^{2.5} \cdot x^{-3.5} - \int ...

    For the other side of the integral, I took the derivative of 2.5(200)^{2.5}, which, lacking a variable, is 1. That left x^{3.5}, which integrates to \frac{x^{4.5}}{4.5}

    That leaves me with
    2.5(200)^{2.5} \cdot x^{-3.5} - \frac{x^{4.5}}{4.5} =
    1,414,213 x^{-3.5} - \frac{x^{4.5}}{4.5} =

    The definite integrals I take are all quite preposterous (e.g. 5.02 billion minus negative infinity), implying my antiderivative is wrong. (My end goal is to find the difference of the 70th and 30th percentiles of X; I assume I'll need the antiderivative for this but I haven't quite worked out the endgame.)
    Follow Math Help Forum on Facebook and Google+

  13. #13
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    I hate using the formula as well. But my way isn't nearly as formal as TPH's. I just always thought of it as: "the integral of one function times the other, minus the \int of the same function times the derivative of the other" sounds confusing in words, but it helps my weird mind to remember. i just remember to integrate one function, and that appears in both factors. then i put the other function in the first factor, and its derivative in the second factor.
    Follow Math Help Forum on Facebook and Google+

  14. #14
    Junior Member
    Joined
    Mar 2008
    Posts
    39
    Awards
    1

    To no one in particular

    I found the short form of the formula for integration by parts at Wikipedia.

    I think I'm finally starting to get it. The short form is:
    \int u dv = uv - \int v du
    Okay ... processing. I think this means that where there is a "u dv" you are actually multiplying variable u by variable dv. Also, dv is the derivative of v. (Why they didn't include a multiplier dot between u and dv is unknown. Edit: it is also unknown why the math script is taking the space out from between u and dv in the above.)

    I'm still not sure if I have the correct intepretation here, because in every other case of d_ following an integration symbol the formula did not call for multiplication.

    If I'm not mistaken, dx never means multiply, it's just this little thing that follows up integrations or antiderivations (presumably to make the multivariable calculus mavens happy). An example of dx not meaning "multiply by the derivative of x" is two lines up on the Wikipedia page (again "if I'm not mistaken").

    I'm really jonesing to get this figured out. Got my fingers crossed.
    Follow Math Help Forum on Facebook and Google+

  15. #15
    MHF Contributor Mathstud28's Avatar
    Joined
    Mar 2008
    From
    Pennsylvania
    Posts
    3,641
    Quote Originally Posted by Boris B View Post
    I found the short form of the formula for integration by parts at Wikipedia.

    I think I'm finally starting to get it. The short form is:
    \int u dv = uv - \int v du
    Okay ... processing. I think this means that where there is a "u dv" you are actually multiplying variable u by variable dv. Also, dv is the derivative of v. (Why they didn't include a multiplier dot between u and dv is unknown. Edit: it is also unknown why the math script is taking the space out from between u and dv in the above.)

    I'm still not sure if I have the correct intepretation here, because in every other case of d_ following an integration symbol the formula did not call for multiplication.

    If I'm not mistaken, dx never means multiply, it's just this little thing that follows up integrations or antiderivations (presumably to make the multivariable calculus mavens happy). An example of dx not meaning "multiply by the derivative of x" is two lines up on the Wikipedia page (again "if I'm not mistaken").

    I'm really jonesing to get this figured out. Got my fingers crossed.
    You are almost right except u and v are functions of x...if they were different variables you would have to assume one is a constant...making the integration exceedingly simple
    Follow Math Help Forum on Facebook and Google+

Page 1 of 2 12 LastLast

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: January 11th 2012, 02:30 PM
  2. Replies: 8
    Last Post: September 2nd 2010, 12:27 PM
  3. Replies: 0
    Last Post: April 23rd 2010, 03:01 PM
  4. integration by parts
    Posted in the Calculus Forum
    Replies: 1
    Last Post: January 20th 2010, 03:38 PM
  5. Replies: 1
    Last Post: February 17th 2009, 06:55 AM

Search Tags


/mathhelpforum @mathhelpforum