I'm wondering if someone could help me list the Trig functions series.

For example:

Tan(x) = Sin(x)/Cos(x)

Sec(x) = 1/Cos(x)

I'm not sure if this is posted in the right section but I need these information for my Calc homeworks.

Printable View

- May 28th 2006, 10:51 PMnirvaTrig Functions?
I'm wondering if someone could help me list the Trig functions series.

For example:

Tan(x) = Sin(x)/Cos(x)

Sec(x) = 1/Cos(x)

I'm not sure if this is posted in the right section but I need these information for my Calc homeworks. - May 29th 2006, 01:11 AMCaptainBlackQuote:

Originally Posted by**nirva**

Others are:

Cot(x)=1/Tan(x)=Cos(x)/Sin(x)

Cosec(x)=1/Sin(x).

RonL - May 29th 2006, 10:56 AMnirvaQuote:

Originally Posted by**CaptainBlack**

$\displaystyle \int \frac {sin(x) + sec(x)} {tan(x)} dx $

Where sin(x)/tan(x) becomes sin(x)/{sin(x)/cos(x)}

What is Sec(x)/Tan(x) equal to by the way? Csc(x)? - May 29th 2006, 07:04 PMmalaygoel
yes it is equal to Csc(x)

- May 30th 2006, 04:16 AMSoroban
Hello, nirva!

Quote:

Because those examples are what was given to some question like: $\displaystyle \int\frac{\sin x + \sec x}{\tan x}\,dx $

Where $\displaystyle \frac{\sin x}{\tan x }$ becomes $\displaystyle \frac{\sin x}{\frac{\sin x}{\cos x}}$

What is $\displaystyle \frac{\sec x }{\tan x}$ equal to? .$\displaystyle \csc x$ ?

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

By the way, I prefer to simplify the function like this:

. . . $\displaystyle \displaystyle{\frac{\sin x + \sec x}{\tan x} \;= \;\frac{\sin x + \frac{1}{\cos x}}{\frac{\sin x}{\cos x}} }$

Multiply top and bottom by $\displaystyle \cos x$******

. . . $\displaystyle \frac{\cos x\left(\sin x + \frac{1}{\cos x}\right)}{\cos x\left(\frac{\sin x}{\cos x}\right)} \;= \;\frac{\sin x\cos x + 1}{\sin x}$

Then make two fractions:

. . . $\displaystyle \frac{\sin x\cos x}{\sin x} + \frac{1}{\sin x} \;= \;\cos x + \csc x$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

******

This is a technique used on a complex fraction,

. . a fraction with more than two "levels".

Example: $\displaystyle \frac{\frac{1}{3} + \frac{1}{2}}{\frac{1}{6} + \frac{1}{4}} $

Multiply top and bottom by the LCD of $\displaystyle all$ the denominators (12):

. . . $\displaystyle \frac{12\cdot\left(\frac{1}{3} + \frac{1}{2}\right)}{12\cdot\left(\frac{1}{6} + \frac{1}{4}\right)} \;= \;\frac{4 + 6}{2 + 3} \;= \;\frac{10}{5}\;=\;2$ . . . see? - May 30th 2006, 01:52 PMSusie38
Are you asking for the different trig identities? just wondering