determine if it exists Lim x^2-2x+1/sqrt(x+3)-2 x->1 Lim x^2-2x+1 *sqrt(x+3 ) +2 / (sqrt(x+3)-2)(sqrt(x+3)+2) x->1 Lim (x-1)(x-1)*sqrt(x+3 ) +2 /(x-1) x->1 Lim (x-1) sqrt(x+3 ) +2 = 0 x->1
Follow Math Help Forum on Facebook and Google+
Originally Posted by bobby77 determine if it exists Lim x^2-2x+1/sqrt(x+3)-2 x->1 Lim x^2-2x+1 *sqrt(x+3 ) +2 / (sqrt(x+3)-2)(sqrt(x+3)+2) x->1 Lim (x-1)(x-1)*sqrt(x+3 ) +2 /(x-1) x->1 Lim (x-1) sqrt(x+3 ) +2 = 0 x->1 Hello, please use brackets to determine numerator and denominator of fractions. Otherwise your terms are not clear enough to help you. Greetings EB
determine if it exists Lim (x^2-2x+1)/(sqrt(x+3)-2) x->1 Lim (x^2-2x+1) *(sqrt(x+3 ) +2) /[ (sqrt(x+3)-2)(sqrt(x+3)+2) ] x->1 Lim [(x-1)(x-1)]*(sqrt(x+3 ) +2) /(x-1) x->1 Lim (x-1)*( sqrt(x+3 ) +2) = 0 x->1
Originally Posted by bobby77 determine if it exists Lim (x^2-2x+1)/(sqrt(x+3)-2) x->1 Lim (x^2-2x+1) *(sqrt(x+3 ) +2) /[ (sqrt(x+3)-2)(sqrt(x+3)+2) ] x->1 Lim [(x-1)(x-1)]*(sqrt(x+3 ) +2) /(x-1) x->1 Lim (x-1)*( sqrt(x+3 ) +2) = 0 x->1 Or more simply ya got, Rationalize, Thus, Thus, As, you get 0.
View Tag Cloud