I need some help integrating:
$\displaystyle \int^{18}_{0} \sqrt{\frac{1}{t}+1+\frac{9t}{2}}$.
would it be:
$\displaystyle \int \sqrt{\frac{1}{t}+1+\frac{9t}{2}}$ = $\displaystyle t \sqrt{\frac{1}{t} +1 + \frac{9t}{2}} - \frac{1}{2} \left( \frac{1}{t} + 1 + \frac{9t}{2} \right) ^{- \frac{1}{2}} \times \left( \frac{1}{t} + \frac{9t}{2} \right)$