Hello, gracey!
peritus is absolutely correct . . .
Find the area of the region bounded by the yaxis, the curve $\displaystyle y\:=\:x^3$
and the lines $\displaystyle y=1$ and $\displaystyle y=27.$ Did you make a sketch? Code:

27+*
:::::::::::
::::::::::*
::::::::::
:::::::::*
::::::::*
1+*
 *
  *        
* 
* 
* 
* 
It is easier to integrate with respect to $\displaystyle y\!:\;\;x \:=\:y^{\frac{1}{3}}$
So we have: .$\displaystyle A \;=\;\int^{27}_1\,y^{\frac{1}{3}}\,dy$