I'm having some trouble with these:
1. Find the arc length of the function: y^2 = 4(x+4)^3 from 0 to 2
2. Find the arc length of the function: y = e^x from 0 to 1
Thank you very much for any assistance
Hello, coolio!
The first one is straight-forward.
Exactly where is your difficulty?
Formula: .$\displaystyle L \;=\;\int^b_a\sqrt{1 + \left(\frac{dy}{dx}\right)^2}\,dx$1. Find the arc length of the function: $\displaystyle y^2 \:= \:4(x+4)^3$ from 0 to 2
We have: .$\displaystyle y \;=\;2(x+4)^{\frac{3}{2}} $
. .Then: .$\displaystyle \frac{dy}{dx} \:=\:3(x+4)^{\frac{1}{2}} $
. .And: .$\displaystyle 1 +\left(\frac{dy}{dx}\right)^2 \;=\;1 + 9(x+4) \;=\;9x+37$
. . Hence: .$\displaystyle \sqrt{1+ \left(\frac{dy}{dx}\right)^2} \;=\;\sqrt{9x+37}$
Then we have: .$\displaystyle L \;=\;\int^2_0(9x+37)^{\frac{1}{2}}\,dx$
Can you finish it?