Arctangent Integration help

I need help integrating:

xarctan(x) / ((1+x^2)^2)

I did trig substitutions like this:

u=tan(theta)

du=sec^2(theta) d(theta)

So I ended up with:

Integral of (tan(theta)*arctan(tan(theta))*(sec^2(theta))) / ((1+tan^2(theta))^2)

Which simplifies into:

Integral of:

(Theta)(tan(theta))(sec^2(theta)) / (sec^2(theta))^2

The sec^2(theta)'s cancel so I have:

(theta)(tan(theta))(cos^2(theta)), which simplifies into:

(theta)(sin(theta))(cos(theta))

Is that right, and if so, how do I integrate it?