# I need some help at least starting this out.

• Feb 12th 2008, 01:28 PM
billabong7329
I need some help at least starting this out.
A baseball hit at an angle of "X" to the horizontal with initial velocity "V" has horizontal range, R , given by

$R = (((V^2)/g)sin(2x))$

Here "g" is the acceleration due to gravity. Sketch "R" as a function of "x" for $0 <= x <= (pi/2)$ . What angle "Xmax" gives the maximum range? What is the maximum range "Rmax" ?
• Feb 12th 2008, 01:36 PM
Jhevon
Quote:

Originally Posted by billabong7329
A baseball hit at an angle of "X" to the horizontal with initial velocity "V" has horizontal range, R , given by

$R = (((V^2)/g)sin(2x))$

Here "g" is the acceleration due to gravity. Sketch "R" as a function of "x" for $0 <= x <= (pi/2)$ . What angle "Xmax" gives the maximum range? What is the maximum range "Rmax" ?

the graph of sin(2x) is exactly the same as sin(x), except now, the period is pi as opposed to 2pi. the constant multiple in front changes the amplitude, so the graph will go up to a max of (V^2)/g and down to a min of -(V^2)/g
• Feb 12th 2008, 05:20 PM
billabong7329
Ok, wow, I thought way too much into the question and totally didn't see any of that.

So the X max ended up being "pi/4" and I got the question right.

Thanks, I appreciate it as always.
• Feb 12th 2008, 05:45 PM
Jhevon
Quote:

Originally Posted by billabong7329
Ok, wow, I thought way too much into the question and totally didn't see any of that.

So the X max ended up being "pi/4" and I got the question right.

Thanks, I appreciate it as always.

you're very much welcome :)