Originally Posted by

**aris27** 1. Let f: R --> R be defined by f(x) = x^2 - 2. Find f([-3,3]) and f^-1([-3,3]).

2. For the infinite series sigma k=1 to infinity (1/3)^k find s1,s2, and s3.

3. Find an example of a sequence (if possible) that contains subsequences converging to each number in the set {1,1/2,1/4,1/8,...}

4. Suppose that {sn} = {2/n^2} is the sequence of partial sums ofr the series sigma k=1 to infinity ak. Find a1,a2,a3

Can someone please explain to me and steer me in the right direction