Results 1 to 7 of 7

Math Help - relative and absolute extrema

  1. #1
    Junior Member
    Joined
    Apr 2006
    Posts
    25

    relative and absolute extrema

    I'm learning calculus from a book called "Forgotten Calculus". I'm getting confused by something. The author states that a critical point can be, but need not be, both a relative extreme and an absolute extreme at the same time. Fair enough. But in the case of two simple exercises, I find that either she's not being optimally precise in her wording of the solution, or I'm missing something fundamental.

    Consider these two functions:

    a) y = f(x) = 1/4x^4 + x and
    b) y= f(x) = x^10 + 2

    I can find the critical points easily enough. For each there is only one. For a) it's (-1, -3/4) and for b) it's (0, 2).

    She says that both are relative minima. Yes, but I think the more complete answer would be to call them absolute minima. My reasoning is that in each case, if the critical point is the ONLY critical point of the function (and having established, via the first derivative test, that each one is a minimum), then by definition each must be an ABSOLUTE minimum. As a check I graphed each function with a TI 83 with the window set quite tall and wide and as far as I can see, indeed, each is an absolute minimum.

    Am I right? If not, why not?

    I'd be grateful for any advice.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Oct 2005
    From
    Earth
    Posts
    1,599
    You need to look at the end behavior, so check the \lim_{x\rightarrow\infty}f(x) and \lim_{x\rightarrow-\infty}f(x). If your relative extrema still has a magnitude greater than these, than you can call it an absolute max/min. But if not, it is only a max/min relative to the points around it.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by lingyai
    I'm learning calculus from a book called "Forgotten Calculus". I'm getting confused by something. The author states that a critical point can be, but need not be, both a relative extreme and an absolute extreme at the same time. Fair enough. But in the case of two simple exercises, I find that either she's not being optimally precise in her wording of the solution, or I'm missing something fundamental.

    Consider these two functions:

    a) y = f(x) = 1/4x^4 + x and
    b) y= f(x) = x^10 + 2

    I can find the critical points easily enough. For each there is only one. For a) it's (-1, -3/4) and for b) it's (0, 2).

    She says that both are relative minima. Yes, but I think the more complete answer would be to call them absolute minima. My reasoning is that in each case, if the critical point is the ONLY critical point of the function (and having established, via the first derivative test, that each one is a minimum), then by definition each must be an ABSOLUTE minimum. As a check I graphed each function with a TI 83 with the window set quite tall and wide and as far as I can see, indeed, each is an absolute minimum.

    Am I right? If not, why not?

    I'd be grateful for any advice.
    The rigorous meaning of relative minima c of a function is a point such as there exists an open interval (a,b) such as, f(x)\geq f(c) for all a<x<b. The rigorous meaning a an absolute minima c of a function on an interval is when f(c) is less than an other value on that interval. Thus, an absolute minima is a relative minima, but a relative minima is not necessarily an absolute minima.

    The same for absolute/relative maxima. You are right about saying it is an absolute minima, by the author is also right it being a relative minima.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Jameson
    You need to look at the end behavior, so check the \lim_{x\rightarrow\infty}f(x) and \lim_{x\rightarrow-\infty}f(x). If your relative extrema still has a magnitude greater than these, than you can call it an absolute max/min. But if not, it is only a max/min relative to the points around it.
    That is not necessarily true. You can have an oscilating function perhaps? Not having a limit but exceeding the relative maxima.

    You can perhaps use this for "well-behaved" functions, but if you function behaves like the House on C-SPAN then you need to reconsider.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,901
    Thanks
    329
    Awards
    1
    Quote Originally Posted by ThePerfectHacker
    You are right about saying it is an absolute minima, by the author is also right it being a relative minima.
    Warning: I'm going to be a stuffy prig again!

    The word "minima" refers to the plural. What you meant to say was "minimum" because you were referring to a single point.

    Okay, pet peeve fit over!

    -Dan

    (I know, I know! Who really cares!)
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Junior Member
    Joined
    Apr 2006
    Posts
    25

    Follow-up question

    First, thank you both. As for your reply, PerfectHacker: it's understood. But what do you think of my reasoning that if we know there is only 1 critical point, and that it is, say, a minimum, it follows that that it must be an absolute minimum?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by lingyai
    First, thank you both. As for your reply, PerfectHacker: it's understood. But what do you think of my reasoning that if we know there is only 1 critical point, and that it is, say, a minimum, it follows that that it must be an absolute minimum?
    Absosultey positively not, consider,
    Code:
    .               .
     .            .
      .   ..    . 
       . .  . .
    This is supposed to look like a graph, to lazy to use my program . Look only one relative maximum (thank you topsquark) in the middle but not a absolute.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 5
    Last Post: December 9th 2010, 10:00 AM
  2. Relative and Absolute Extrema
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 5th 2010, 02:07 PM
  3. Relative and Absolute Extrema
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 1st 2010, 10:47 PM
  4. Replies: 1
    Last Post: November 18th 2009, 11:22 PM
  5. Replies: 1
    Last Post: April 21st 2009, 11:32 AM

Search Tags


/mathhelpforum @mathhelpforum