If  (I_{\alpha}f)(x) = \int_{\bold{R}^{n}} [V(x,y)]^{-1+ \alpha} f(y) \  d \mu(y) prove that  ||I_{\alpha} f||_{q} \leq A_{p,q} ||f||_{p} whenever  1 < p < q < \infty and  q^{-1} = p^{-1} - \alpha .