# Thread: A Partial differetial question

1. ## A Partial differetial question

PV = RT(1+B(T)/V)

Code:


img.top {vertical-align:15%;}

$\beta$ = (1/V)*(

img.top {vertical-align:15%;}

$\frac{dV}{dT}$)
at constant P

show
Code:


img.top {vertical-align:15%;}

$\beta$ =

img.top {vertical-align:15%;}

$\frac{1}{T}$*

img.top {vertical-align:15%;}

$\frac{V + B + T\frac{dB}{dT}}{V + 2B}$
I got to

Code:


img.top {vertical-align:15%;}

$\beta$ =

img.top {vertical-align:15%;}

$\frac{PV}{VRT+PRTB}$*(

img.top {vertical-align:15%;}

$\frac{R}{P}$+

img.top {vertical-align:15%;}

$\frac{d}{dT}$

img.top {vertical-align:15%;}

$\frac{RTB}{V}$)
I need help with
Code:


img.top {vertical-align:15%;}

$\frac{d}{dT}$

img.top {vertical-align:15%;}

$\frac{RTB}{V}$)
I dont know the latex format for pd

2. Originally Posted by j-lee00
I dont know the latex format for pd
Basically the same thing that you have, except replace $$with [tex] and$$ with [/tex] .

-Dan

3. To use TeX here use [ MATH] and [ /MATH] without the spaces.

Here is what you posted:

PV = RT(1+B(T)/V)

$\beta = (1/V)*(\frac{dV}{dT})$

at constant P

show

$\beta = \frac{1}{T}*\frac{V + B + T\frac{dB}{dT}}{V + 2B}$

I got to

$\beta=\frac{PV}{VRT+PRTB}*(\frac{R}{P}+\frac{d}{dT }\frac{RTB}{V}$)

I need help with

$\frac{d}{dT}\frac{RTB}{V}$

4. I need help with

$\frac{d}{dT}\frac{RTB}{V}$
I haven't look at the rest of it, but since R and B are constant it would seem to be that
$\frac{d}{dT} \left ( \frac{RTB}{V} \right ) = \frac{RB}{V} - \frac{RTB}{V^2}~\frac{dV}{dT}$

-Dan

5. B(T) not a constant

6. Originally Posted by j-lee00
B(T) not a constant
Okay, then
$\frac{d}{dT} \frac{RTB}{V} = R \left ( \frac{B}{V} + \frac{T}{V} \frac{dB}{dT} - \frac{TB}{V^2}\frac{dV}{dT} \right )$

(This is a rather messy problem you've got here, isn't it?)

-Dan