Results 1 to 4 of 4

Math Help - Difficulty with integration of exponential

  1. #1
    Junior Member
    Joined
    Nov 2007
    Posts
    53

    Difficulty with integration of exponential

    Ok, so this problem appears very simple, so I'm actually surprised that I'm stumped on it, but I'm very suspicious that the answer is in poor algebra skills since I'm thinking I may be forgetting my exponents rule here or applying incorrectly.

    Anyway, the problem is to find the volume of a solid of revolution for the function e raised to the -x when y=0 and x is equal to or greater than 0, so the definite integral is from 0 to infinite. I have V = pie * the integral from 0 to infinite of e raised to the -x and then squared and I think this is where I'm running into trouble. I'm solving e raised to the -x and then squared as e raised to the x^2 and I don't see how you could solve the integral of e raised to the x^2 power because you can't do a U sub since du would be 2x and there's no x, so you can't factor out a coefficient...parts doesn't seem applicable, nor does tab, and can't integrate it as is or use algebra to integrate.

    So my question is, would e raised to the -x power then squared be e raised to the -2x power instead? Because then that would be simple enough to integrate, then take the limit and solve the problem. I apologize in advance for not having everything in the math notation on here, but for some reason, I can't figure out how to depict e to a power such as -x with the math symbols.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by emttim84 View Post
    Ok, so this problem appears very simple, so I'm actually surprised that I'm stumped on it, but I'm very suspicious that the answer is in poor algebra skills since I'm thinking I may be forgetting my exponents rule here or applying incorrectly.

    Anyway, the problem is to find the volume of a solid of revolution for the function e raised to the -x when y=0 and x is equal to or greater than 0, so the definite integral is from 0 to infinite. I have V = pie * the integral from 0 to infinite of e raised to the -x and then squared and I think this is where I'm running into trouble. I'm solving e raised to the -x and then squared as e raised to the x^2 and I don't see how you could solve the integral of e raised to the x^2 power because you can't do a U sub since du would be 2x and there's no x, so you can't factor out a coefficient...parts doesn't seem applicable, nor does tab, and can't integrate it as is or use algebra to integrate.

    So my question is, would e raised to the -x power then squared be e raised to the -2x power instead? Because then that would be simple enough to integrate, then take the limit and solve the problem. I apologize in advance for not having everything in the math notation on here, but for some reason, I can't figure out how to depict e to a power such as -x with the math symbols.
    when you raise something to a power to another power, you multiply the powers, that is, (x^a)^b = x^{ab}

    so, V = \pi \int_0^{\infty} (e^{-x})^2~dx = \pi \int_0^{\infty} e^{-2x}~dx

    you could also think of e^{-x} squared as e^{-x} \cdot e^{-x}, in which case you know that you add the powers to get e^{-2x}

    i assume you are rotating about the x-axis, since that's what your formula says you're doing

    nice signature
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Nov 2007
    Posts
    53
    Quote Originally Posted by Jhevon View Post
    when you raise something to a power to another power, you multiply the powers, that is, (x^a)^b = x^{ab}

    so, V = \pi \int_0^{\infty} (e^{-x})^2~dx = \pi \int_0^{\infty} e^{-2x}~dx

    you could also think of e^{-x} squared as e^{-x} \cdot e^{-x}, in which case you know that you add the powers to get e^{-2x}

    i assume you are rotating about the x-axis, since that's what your formula says you're doing

    nice signature
    Ahh ok, so I /was/ making an exponents rule error...ok, well at least that explains why I couldn't integrate it. and yes, rotating it around the X axis. Thanks, I love that quote from Scrubs.

    Now the integral should come out nice and neat, as should the limit. Thanks!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    AlexMack
    Guest
    Quote Originally Posted by emttim84 View Post
    Ok, so this problem appears very simple, so I'm actually surprised that I'm stumped on it, but I'm very suspicious that the answer is in poor algebra skills since I'm thinking I may be forgetting my exponents rule here or applying incorrectly.

    Anyway, the problem is to find the volume of a solid of revolution for the function e raised to the -x when y=0 and x is equal to or greater than 0, so the definite integral is from 0 to infinite. I have V = pie * the integral from 0 to infinite of e raised to the -x and then squared and I think this is where I'm running into trouble. I'm solving e raised to the -x and then squared as e raised to the x^2 and I don't see how you could solve the integral of e raised to the x^2 power because you can't do a U sub since du would be 2x and there's no x, so you can't factor out a coefficient...parts doesn't seem applicable, nor does tab, and can't integrate it as is or use algebra to integrate.

    So my question is, would e raised to the -x power then squared be e raised to the -2x power instead? Because then that would be simple enough to integrate, then take the limit and solve the problem. I apologize in advance for not having everything in the math notation on here, but for some reason, I can't figure out how to depict e to a power such as -x with the math symbols.
    Indeed, it has been proven that
    \int e^{x^{2}}\,dx
    cannot be evaluated in terms of elementary functions.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Exponential Integration
    Posted in the Calculus Forum
    Replies: 5
    Last Post: April 21st 2011, 08:02 PM
  2. Integration of exponential
    Posted in the Calculus Forum
    Replies: 3
    Last Post: May 17th 2009, 04:26 AM
  3. exponential integration
    Posted in the Calculus Forum
    Replies: 2
    Last Post: April 25th 2009, 08:42 PM
  4. [SOLVED] Integration difficulty
    Posted in the Calculus Forum
    Replies: 2
    Last Post: August 7th 2007, 08:33 AM
  5. Exponential integration
    Posted in the Calculus Forum
    Replies: 1
    Last Post: May 14th 2007, 12:30 PM

Search Tags


/mathhelpforum @mathhelpforum