Originally Posted by

**tommyjay117** A man has 340 yards of fencing for enclosing two seperate fields, one of which is to be a rectangle twice as long as it is wide and the other a square. The square field must contain a least 100 square yards and the rectangular one must contain at least 800 square yards.

a) If x is the width of the rectangular field, what are the maximum and minimum possible values of x?

b) What is the greatest number of square yards that can be enclosed in the two fields? Justify your answer.

I don't even know what to do with calculus on this one. Do I need to create an equation for the width/size with x and then derive and find the minimum/maximum?