How do I go from
$\displaystyle
\int \frac{dv}{cv^2 - g} = \int~dt
$
to
$\displaystyle
\frac{1}{2\sqrt{cg}}\ln\left(\frac{\sqrt g + v\sqrt c}{\sqrt g - v\sqrt c}\right)=a-t
$
It's not just urgent - it's VERY urgent! :/ Big assignment..
How do I go from
$\displaystyle
\int \frac{dv}{cv^2 - g} = \int~dt
$
to
$\displaystyle
\frac{1}{2\sqrt{cg}}\ln\left(\frac{\sqrt g + v\sqrt c}{\sqrt g - v\sqrt c}\right)=a-t
$
It's not just urgent - it's VERY urgent! :/ Big assignment..
Hello, Rydbirk!
How do I go from: .$\displaystyle
\int \frac{dv}{cv^2 - g} \:= \:\int \,dt$
. . . to: .$\displaystyle \frac{1}{2\sqrt{cg}}\ln\left|\frac{\sqrt g + v\sqrt c}{\sqrt g - v\sqrt c}\right|\;=\;C-t$
The right side is: .$\displaystyle \int dt \;=\;t + C$
Let: $\displaystyle cv^2 \:=\:u^2\quad\Rightarrow\quad v \:=\:\frac{1}{\sqrt{c}}u\quad\Rightarrow\quad dv \:=\:\frac{du}{\sqrt{c}} $
Also let: $\displaystyle g \:=\:a^2$
The left side becomes: .$\displaystyle \int\frac{1}{u^2-a^2}\left(\frac{du}{\sqrt{c}} \right) \;=\;\frac{1}{2a\sqrt{c}}\ln\left|\frac{u-a}{u+a}\right| + C$
Back-substitute: .$\displaystyle u \:=\:v\sqrt{c}\;\text{ and }\; a = \sqrt{g}$
. . $\displaystyle \frac{1}{2\sqrt{g}\sqrt{c}} \ln\left|\frac{v\sqrt{c} - \sqrt{g}}{v\sqrt{c} + \sqrt{g}}\right| $
And we have: .$\displaystyle \frac{1}{2\sqrt{cg}}\ln\left|\frac{v\sqrt{c} - \sqrt{g}}{v\sqrt{c} + \sqrt{g}}\right| \;=\;t + C$
This answer is equivalent to the one your calculator gave.