Hi, im given a velocity function v(t)=cos(t); pi/2 <= t <= 2pi

I am able to find the displacement but not the distance, does anyone know how to do this?

thanks

Printable View

- December 4th 2007, 03:34 PMcowboys111velocity and distance with integration
Hi, im given a velocity function v(t)=cos(t); pi/2 <= t <= 2pi

I am able to find the displacement but not the distance, does anyone know how to do this?

thanks - December 4th 2007, 03:35 PMJhevon
- December 4th 2007, 03:44 PMcowboys111

- December 4th 2007, 03:47 PMJhevon
- December 4th 2007, 03:48 PMcowboys111
sorry about the last post. How does the book get from

to a negative integral going from pi/2 to 3pi/2 cot(t) + integral going from 3pi/2 to 2pi cos(t)? - December 4th 2007, 03:50 PMJhevon
because

so they split the integral into two parts. the interval on which it is negative and the interval on which it is positive. on the interval the function was negative, they took the negative of the function (which is positive) for that interval and integrated it - December 4th 2007, 04:06 PMcowboys111
ok, so did they figure out where the integral was positive or negative by graphing it?

- December 4th 2007, 04:07 PMJhevon
- December 4th 2007, 04:08 PMcowboys111
awesome. thanks for the help

- December 4th 2007, 04:15 PMangel.white
Okay, think I got it.

I split it up:

cosine is negative from to so for that duration, I changed it to -cosine

which turned into:

which equals 3