Results 1 to 12 of 12

Math Help - Differentiation of f(x,y)

  1. #1
    Newbie
    Joined
    Mar 2006
    Posts
    4

    Differentiation of f(x,y)

    f(x,y) = x^2 + y^2 - 3 abs(xy)

    What does the vertical cross section of the surface along a diagonal through the origin (ie. the plane y = x = t) look like?

    I graphed this in Scientific Workplace and got a paraboloid, but I don't see a paraboliod in the graph of the function, can someone please help me to see how to get this?
    Thanks
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Newbie
    Joined
    Mar 2006
    Posts
    4

    Directional direvitives

    I also have a question on the directional direvatives at the origin and whether or not they exist. For the partial direvative of x at the origin I got 0 and same for partial of y.
    So I was using Duf(0,0) =fx cos() + fy sin() to find, but since both my fx and fy are 0 all I get is 0.
    Is it possible that I got the right answer in that Duf(0,0) = 0?
    Please help.
    Thanks
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,211
    Thanks
    419
    Awards
    1
    Quote Originally Posted by paloma
    f(x,y) = x^2 + y^2 - 3 abs(xy)

    What does the vertical cross section of the surface along a diagonal through the origin (ie. the plane y = x = t) look like?

    I graphed this in Scientific Workplace and got a paraboloid, but I don't see a paraboliod in the graph of the function, can someone please help me to see how to get this?
    Thanks
    Actually, it's a parabola, not a paraboloid (which is a 3-D object).

    I think you're thinking too hard about it. If you are trying to project the function onto the x=y=t plane, just set x = t and y = t:
    f(t,t)=t^2+t^2-3t^2=-t^2
    which is clearly a parabola.

    -Dan
    Last edited by topsquark; March 31st 2006 at 06:10 AM. Reason: LaTeX error
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,211
    Thanks
    419
    Awards
    1
    Quote Originally Posted by paloma
    I also have a question on the directional direvatives at the origin and whether or not they exist. For the partial direvative of x at the origin I got 0 and same for partial of y.
    So I was using Duf(0,0) =fx cos() + fy sin() to find, but since both my fx and fy are 0 all I get is 0.
    Is it possible that I got the right answer in that Duf(0,0) = 0?
    Please help.
    Thanks
    Remember that the directional derivative is a vector, so
    D_uf(x,y) |_{(0,0)} = f_x(0,0) \hat{i} + f_y(0,0) \hat{j}

    Since both the partial derivatives are zero, then, the directional derivative is the zero vector (which, of course, has a magnitude of zero.) Zero is certainly an allowed value (being a real number) so we CAN say the directional derivative exists at the origin, but that it simply has no magnitude.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,211
    Thanks
    419
    Awards
    1
    Quote Originally Posted by topsquark
    Remember that the directional derivative is a vector, so
    D_uf(x,y) |_{(0,0)} = f_x(0,0) \hat{i} + f_y(0,0) \hat{j}

    Since both the partial derivatives are zero, then, the directional derivative is the zero vector (which, of course, has a magnitude of zero.) Zero is certainly an allowed value (being a real number) so we CAN say the directional derivative exists at the origin, but that it simply has no magnitude.

    -Dan
    Whoops! I made a boo boo!

    The directional derivative is, of course, not a vector. It is defined as:
    D_uf(x,y)=(f_x \hat i  + f_y \hat j ) \cdot \hat u where \hat u is a unit vector in the direction of u.

    So your original expression for the directional derivative was correct. My apologies.

    The rest of my discussion is almost unchanged. The only difference is the comment about the zero vector, which no longer has meaning with the correction.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by paloma
    I also have a question on the directional direvatives at the origin and whether or not they exist. For the partial direvative of x at the origin I got 0 and same for partial of y.
    So I was using Duf(0,0) =fx cos() + fy sin() to find, but since both my fx and fy are 0 all I get is 0.
    Is it possible that I got the right answer in that Duf(0,0) = 0?
    Please help.
    Thanks
    No the directional derivative do not exist. Because the function f(x)=|x| is no differencialbe at the origin. Thus, when you are given the function,
    f(x,y)=x^2+y^2-3|xy| it is equivalen to,
    f(x,y)=x^2+y^2-3|x||y| no you cannot take the partial derivatives at zero because by the previous explanation the functions |x|,|y| have no derivatives thus, no partial derivatives.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,211
    Thanks
    419
    Awards
    1
    Ahem! Forgot about the absolute value part of the function!

    -Dan
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Newbie
    Joined
    Mar 2006
    Posts
    4

    Thank you!

    Thank you both very much for helping me out with these two problems! I really appreciate your help.
    I just have one last question about the abs(x) not being differentiable, why is that? I haven't taken math courses in over three years so I don't remember all the rules. Please explain this part to me.
    Thank you so much.
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,211
    Thanks
    419
    Awards
    1
    Quote Originally Posted by paloma
    Thank you both very much for helping me out with these two problems! I really appreciate your help.
    I just have one last question about the abs(x) not being differentiable, why is that? I haven't taken math courses in over three years so I don't remember all the rules. Please explain this part to me.
    Thank you so much.
    Consider the graph of y = |x|. What is the first derivative for x < 0? It is -1. For x > 0 the derivative is +1. What is the derivative at x = 0? Obviously the first derivative has a discontinuity at x = 0 since it abruptly goes from -1 to +1. So we can't define a first derivative there.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by paloma
    Thank you both very much for helping me out with these two problems! I really appreciate your help.
    I just have one last question about the abs(x) not being differentiable, why is that? I haven't taken math courses in over three years so I don't remember all the rules. Please explain this part to me.
    Thank you so much.
    First, let me remind you what absolute value means.
    For all real numbers,
    |x|=\left\{ \begin{array}{ccc}x& \mbox{for}& x\geq 0 \\-x& \mbox{for}& x<0\end{array}\right
    --------
    By Definition of Derivative we have,
    \lim_{\Delta x\to 0}\frac{|x+\Delta x|-|x|}{\Delta x}

    If x>0 we have, |x|=x and |x+\Delta x|=x+\Delta x. Thus, the limit becomes,
    \lim_{\Delta x\to 0}\frac{x+\Delta x-x}{\Delta x}=\frac{\Delta x}{\Delta x}=1

    If x<0 we have, |x|=-x and |x+\Delta x|=-x-\Delta x. Thus, the limit beomes,
    \lim_{\Delta x\to 0}\frac{-x-\Delta x+x}{\Delta x}=\frac{-\Delta x}{\Delta x}=-1

    If x=0 we have, |x|=0 and |x+\Delta x|=|\Delta x|. Thus, the limit beomes,
    \lim_{\Delta x\to 0}\frac{|\Delta x|}{\Delta x} but the limit does not exits. Because,
    \lim_{\Delta x\to 0^+}\frac{|\Delta x|}{\Delta x}=\frac{\Delta x}{\Delta x}=1 and,
    \lim_{\Delta x\to 0^-}\frac{|\Delta x|}{\Delta x}=\frac{-\Delta x}{\Delta x}=-1. Thus, the left sided limit does not coincide with the right handed limit thus, the function is not differenciable.

    Thus, we have,
    (|x|)'=\left\{ \begin{array}{ccc}1 &\mbox{for}&x>0\\ \mbox{Does not exist}&\mbox{for}&x=0\\-1&\mbox{for}&x<0\end{array}\right.

    Below is a graph demonstrating the derivative, notice the point x=0 is not in its domain.
    Attached Thumbnails Attached Thumbnails Differentiation of f(x,y)-picture2.gif  
    Last edited by ThePerfectHacker; April 1st 2006 at 05:22 PM.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Newbie
    Joined
    Mar 2006
    Posts
    4
    Thank you so much for that explanation. It really did help me to figure out what was going on.
    Thanks again!
    Follow Math Help Forum on Facebook and Google+

  12. #12
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Welcome
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: July 26th 2010, 06:24 PM
  2. Differentiation and partial differentiation
    Posted in the Calculus Forum
    Replies: 2
    Last Post: May 30th 2010, 11:16 PM
  3. Differentiation
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 4th 2010, 11:45 AM
  4. Differentiation Help
    Posted in the Calculus Forum
    Replies: 1
    Last Post: January 25th 2010, 07:20 PM
  5. Differentiation and Implicit Differentiation
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 6th 2009, 05:07 AM

Search Tags


/mathhelpforum @mathhelpforum