$\displaystyle \int \dfrac{\sec x }{\sqrt{\ln(\sec x + \tan x)}} dx$
hint?
I do know the integral of $\displaystyle \sec x + \tan x$ is $\displaystyle \sec x$, but the $\displaystyle \ln$ thing is causing a problem, as well as the square root.
$\displaystyle \int \dfrac{\sec x }{\sqrt{\ln(\sec x + \tan x)}} dx$
hint?
I do know the integral of $\displaystyle \sec x + \tan x$ is $\displaystyle \sec x$, but the $\displaystyle \ln$ thing is causing a problem, as well as the square root.
$\displaystyle \int \dfrac{\sec x }{\sqrt{\ln(\sec x + \tan x)}} dx$
$\displaystyle u = \sec x \tan x$
$\displaystyle du = \sec x dx$
$\displaystyle \int \dfrac{du }{\sqrt{\ln(u)}} $ ??? Next step?