$\displaystyle \int{4}^{1} 9\sqrt{\ln(x)} dx$

n = 6

Change in x = $\displaystyle \dfrac{4 - 1}{6} = \dfrac{1}{2}$

$\displaystyle y_{0} = 0 $

$\displaystyle y_{1} = 5.730852795 $

$\displaystyle y_{2} = 7.4929915 $

$\displaystyle y_{3} = 8.615076859 $

$\displaystyle y_{4} = 9.433323666 $

$\displaystyle y_{5} = 10.07342049 $

$\displaystyle y_{6} = 10.5966902 $