Why have you written your derivative in such an odd format?

$\displaystyle \begin{align*} y &= \sqrt{ 2 - x^2} \\ \frac{ \mathrm{d}y }{\mathrm{d}x} &= -\frac{2x}{2 \sqrt{2 - x^2} } \\ &= -\frac{x}{\sqrt{2 - x^2}} \end{align*}$

so your arclength is

$\displaystyle \begin{align*} L &= \int_a^b{ \sqrt{1 + \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 } \, \mathrm{d}x } \\ &= \int_0^1{ \sqrt{ 1 + \left( -\frac{x}{\sqrt{2 - x^2} } \right) ^2 } \, \mathrm{d}x } \end{align*}$

Go from here...