did you forget a $z^2$ in the equation for your sphere? You've described an infinite cylinder.
Hello.
Greetings,
How is the following solved:
In exercises 1-4, use Divergence Theorem to calculate the flux of the given vector field out of the sphere ("sign that looks like &, I am not sure what it is called") with equation x^{2}+ y^{2 }= a^{2 }, where a > 0.
1. F = (x^{2} + y^{2})i + (y^{2} - z^{2})j + zk
div F = 2x + 2y + 1
I am aware that I’ll need to use the formula for a volume of a sphere:
V = (4/3)πr^{3}
But to calculate this triple integral or flux I might need bounds of integration - how are they found if required?
Sincere regards from user, Kaemper