The problem is attached in this post.

Lim t -> ∞ ∫ dx/xlnx from 1 to t

u-substitution:

u=lnx

du=1/x dx

Lim t -> ∞ ∫ 1/u du

Lim t -> ∞ ln u

Lim t -> ∞ ln(lnx) from 1 to t

Lim t -> ∞ ln(lnt) - ln(0)

= ∞ - ∞ = 0 (This is incorrect since the answer is that the integral is divergent).