Results 1 to 4 of 4

Math Help - Differential equations & integration text problems

  1. #1
    Newbie
    Joined
    Sep 2007
    Posts
    17

    Differential equations & integration text problems

    I need help with two problems:

    The equation for the motion for a piece of metal is:

    dv/dt = g-4v

    find v and show that there is a limiting velocity

    and: when is the piece of metal falling at g/10 m/s

    Problem #2:

    dV/dt = k(Vo - V) is the rate of evaporating water

    in 20 days, 50% of the water evaporates; how much water (in percent) is remaining after 50 days?

    Thanks for your help. It would be nice if you could give me a very easy to understand explanation of how this works. But if you can't, merely a solution is also helpful. Thanks for your support.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,902
    Thanks
    329
    Awards
    1
    Quote Originally Posted by Instigator View Post
    The equation for the motion for a piece of metal is:

    dv/dt = g-4v

    find v and show that there is a limiting velocity

    and: when is the piece of metal falling at g/10 m/s
    \frac{dv}{dt} = g - 4v

    \frac{dv}{dt} + 4v = g

    Solve this how you like, either with integrating factors or by using the homogeneous and particular solutions. I get:
    v(t) = Ae^{-4t} + \frac{g}{4}
    where A is a constant determined by initial conditions.

    The question is asking, what is
    \lim_{t \to \infty} v(t)

    So
    \lim_{t \to \infty} (Ae^{-4t} + \frac{g}{4} )

    = \frac{g}{4}

    When is the object moving at v = \frac{g}{10}?
    For this we need a value for A. It is sensible to choose v(0) = 0, so A = -\frac{g}{4}

    Thus
    v(t) = -\frac{g}{4}e^{-4t} + \frac{g}{4}

    So when v(t) = \frac{g}{10}:
    \frac{g}{10} = -\frac{g}{4}e^{-4t} + \frac{g}{4}

    \frac{1}{10} = -\frac{1}{4}e^{-4t} + \frac{1}{4}

    \frac{1}{4}e^{-4t} = -\frac{1}{10} + \frac{1}{4}

    e^{-4t} = \frac{3}{5}

    -4t = ln \left ( \frac{3}{5} \right )

    t = -\frac{1}{4} \cdot ln \left ( \frac{3}{5} \right )

    This is approximately at t = 0.127706 s.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Sep 2007
    Posts
    17
    Thanks a lot, but can you maybe also tell me how exactly you can use integration to get drom dv/dt to v ? That would be very nice.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,902
    Thanks
    329
    Awards
    1
    Quote Originally Posted by Instigator View Post
    Thanks a lot, but can you maybe also tell me how exactly you can use integration to get drom dv/dt to v ? That would be very nice.
    Sure.

    \frac{dv}{dt} = g - 4v

    \frac{dv}{dt} + 4v = g

    The most basic method (which is what I assume you want) is the method of finding an integrating factor.

    So what can we multiply the LHS of the equation by to make it the derivative of a product?

    Well:
    IF(t) = e^{\int 4~dt} = e^{4t}

    So
    e^{4t} \cdot \left ( \frac{dv}{dt} \right ) + 4ve^{4t} = ge^{4t}

    \frac{d}{dt}(ve^{4t} ) = ge^{4t}

    ve^{4t} = \int ge^{4t}~dt

    ve^{4t} = g \cdot \frac{1}{4}e^{4t} + A
    (A is the arbitrary constant.)

    ve^{4t} = \frac{g}{4} \cdot e^{4t} + A

    v = \frac{g}{4} + Ae^{-4t}

    (If you are more advanced than this, then you might note that the original differential equation is linear and has constant coefficients. So you can solve the homogeneous version of the equation and use variation of parameters to find the particular solution.)

    -Dan
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Partial Differential Equations Problems
    Posted in the Differential Equations Forum
    Replies: 5
    Last Post: September 22nd 2010, 04:22 PM
  2. Differential Equations Application Problems
    Posted in the Differential Equations Forum
    Replies: 5
    Last Post: September 11th 2010, 03:57 AM
  3. Separable Differential Equations Problems
    Posted in the Differential Equations Forum
    Replies: 18
    Last Post: August 31st 2010, 04:27 AM
  4. Ordinary Differential Equations problems
    Posted in the Differential Equations Forum
    Replies: 9
    Last Post: February 15th 2009, 04:39 PM
  5. Separable differential equations problems
    Posted in the Calculus Forum
    Replies: 3
    Last Post: August 13th 2007, 10:50 AM

Search Tags


/mathhelpforum @mathhelpforum