Hey, I am currently trying to program a system of ODE's in a 4th order Runge-Kutta Method in maple. Maple doesn't seem to like my code! Whats wrong

restart;

with(plots):

f:=(x,y,t)->x(t)+2*y-t;

x0:=-1.0;

g:=(x,y,t)->2*y(t)-x-5*t;

y0:=2.0;

t0:=0;

xf:=0.5;

n:=2;

The following procedure estimates the solution of ordinary differential equations at a point xf.

n = number of steps

x0 = boundary condition for x

y0 = boundary condition for y

xf = value at which solution is desired

f = differential equation in the form

d

--- x(t) = f(x, y,t)

dt

g = differential equation in the form

d

--- y(t) = g(x, y,t)

dt

RK4th:=proc(n,x0,y0,xf,f,t0,g)

local X,Y,t,h,i,k1,k2,k3,k4,g1,g2,g3,g4:

h:=(xf-x0)/n:

X:=y0:

Y:=x0:

t:=t0:

for i from 0 by 1 to n-1 do

k1:=f(X,y0+i*h,t);

g1:=g(x0+i*h,Y,t);

k2:=f(X+0.5*k1*h,y0+i*h+0.5*g1*h,t+0.5*h);

g2:=g(x0+i*h+0.5*g1*h,y0+0.5*k1*h,t+0.5*h);

k3:=f(X+0.5*k2*h,y0+i*h+0.5*g2*h,t+0.5*h);

g3:=g(x0+i*h+0.5*g2*h,Y+0.5*k2*h,t+0.5*h);

k4:=f(X+k3*h,y0+i*h+g3*h,t+h);

g4:=g(x0+i*h+g3*h,Y+k3*h,t+h);

Y:=Y+1/6*(g1+2*g2+2*g3+g4)*h;

X:=X+1/6*(k1+2*k2+2*k3+k4)*h;

end do:

return (Y):

return (X):

end proc:

ODE1:=diff(y(t),t)=g(x,y,t);

ODE2:=diff(x(t),t)=f(x,y,t);

soln1:=(dsolve({ODE1,y(t0)=y0}));

assign(soln1):

y(t);

soln2:=(dsolve({ODE2,x(t0)=x0}));

assign(soln2):

x(t);

EV1:=evalf(subs(t=xf,y(t)));

EV2:=evalf(subs(t=xf,x(t)));

X[0]:=x0;

Y[0]:=y0;

h:=(xf-x0)/n;

for i from 1 by 1 to n do

X[i]:=x0+i*h:

Y[i]:=y0+i+h:

t[i]:=t0+i+h:

k1:=f(X[i-1],Y[i-1],t[i-1]);

g1:=g(X[i-1],Y[i-1],t[i-1]);

k2:=f(X[i-1]+0.5*k1*h,Y[i-1]+0.5*g1*h,t[i-1]+0.5*h);

g2:=g(X[i-1]+0.5*g1*h,Y[i-1]+0.5*k1*h,t[i-1]+0.5*h);

k3:=f(X[i-1]+0.5*k2*h,Y[i-1]+0.5*g2*h,t[i-1]+0.5*h);

g3:=g(X[i-1]+0.5*g2*h,Y[i-1]+0.5*k2*h,t[i-1]+0.5*h);

k4:=f(X[i-1]+k3*h,Y[i-1]+g3*h,t[i-1]+h);

g4:=g(X[i-1]+g3*h,Y[i-1]+k3*h,t[i-1]+h);

Y[i]:=Y[i-1]+1/6*(g1+2*g2+2*g3+g4)*h;

X[i]:=X[i-1]+1/6*(k1+2*k2+2*k3+k4)*h;

end do:

data:=[seq([x[i],Y[i]],i=0..n)];