$\displaystyle \lim x \rightarrow \infty$

$\displaystyle (e^{x} + x)^{\dfrac{9}{x}}$

$\displaystyle (e^{\infty} + \infty)^{\dfrac{9}{\infty}}$ This seems to come out to $\displaystyle 1$ as did the limit of (as x approached infinity) $\displaystyle x^{\dfrac{4}{x}}$ But the computer says the answer is NOT 1.