[img]http://puu.sh/55VTj.png[/img] (edit: img tags don't work but you can click it)

okay, so for this question, i figured out that circle/ellipse/hyperbola involves trig functions when you parametrize it in terms of 't' i.e. x=cost y=sint for a circle, so when you differentiate it twice to get the acceleration function it will have a trig function which is non-constant since trig functions oscillate

okay, and for parabola, i can see that if y=x^2 then x=t and y=t^2 so y will be a constant acceleration when differentiated twice

but for a straight line i.e. y=x then you have x=t y=t and when you differentiate both 2 times you have a(t)= <0, 0> which is a zero acceleration. how can a straight line have non-constant non-zero acceleration?