$\displaystyle \lim x \rightarrow \infty[\dfrac{\ln x}{\sqrt{x}}]$
$\displaystyle \lim x \rightarrow \infty(\ln x)}(x^{-1/2})$
$\displaystyle \lim x \rightarrow \infty(\ln (\infty))}((\infty)^{-1/2})$ What does this come out to? Any hint?
$\displaystyle \lim x \rightarrow \infty[\dfrac{\ln x}{\sqrt{x}}]$
$\displaystyle \lim x \rightarrow \infty(\ln x)}(x^{-1/2})$
$\displaystyle \lim x \rightarrow \infty(\ln (\infty))}((\infty)^{-1/2})$ What does this come out to? Any hint?