It seems that I have some issues with the sums...
I have the function
I need to evaluate it by using the definition of Riemann sum for - right end-points,
then,
...
I'm not sure I did right so far, and how should I proceed further...
thanks for hints,
dokrbb
I'll try, the question is like this:
The following sum
is a Right Riemann sum for the definite integral
where b = ...
and f(x) = ...
I checked my answer for and and they are correct; The next question is: the limit of these Riemann sums as n-> infinity is....
does that change my approach?
Yes, this changes everything.does that change my approach?
We use the definition of the Riemann sum to be
Clearly:
as you've done.
And , thus which you've also done correctly.
When they ask for this, they're not asking you to compute this integral by evaluating this limit:The next question is: the limit of these Riemann sums as n-> infinity is....
But rather, what they're asking you to do is evaluate this limit:
by using this relation:
where .
In other words, they're not asking you to compute the integral by using the Riemann sum, they're asking you to compute the Riemann sum by using the integral.