I'm trying to integrate $\displaystyle \int \frac{\sqrt{9-x^2}}{x} \,\, dx$

I let $\displaystyle x = 3\sin \theta \Rightarrow dx = 3\cos \theta \,\, d\theta$

made the substitution $\displaystyle \int \frac{3\cos \theta\sqrt{9(1-\sin^2 \theta)}}{3\sin \theta} \,\, d\theta$

and simplified to $\displaystyle 3\int \frac{\cos^2 \theta}{\sin \theta} \,\, d\theta$ which is where I'm stuck.

I tried to simplify the trig functions into $\displaystyle \cot \theta \cos \theta$ or $\displaystyle \cos^2\theta \csc \theta$ but nothing helped