It looks lie this problem expects you to know that the cross product of two vectors is perpendicular to both.
Once you have the vector, <A, B, C>, the line parallel to that vector, through point (a, b, c) is given by x= Ax+ a, y= Bx+ b. z= Cx+ c.
Hi.
For lines, i know primarily we need a point, and a vector parallel to the line.
But for this question,
Find the equation of the line through (2,1,0) and perpendicular to both i+j and j+k.
How do i derive the parallel vector. What doe sit mean if the line is perpendicular to i+j and j+k ? How do I use this.
Thanks
It looks lie this problem expects you to know that the cross product of two vectors is perpendicular to both.
Once you have the vector, <A, B, C>, the line parallel to that vector, through point (a, b, c) is given by x= Ax+ a, y= Bx+ b. z= Cx+ c.
I would have put it the other way around- (1, 1, 0) and (0, 1, 1) are (somewhat ambiguous- it can be confused with a point) ways of writing what should be called i+ j and j+ k.