1. ## Lagrange Multipliers

The teacher gave us some problems on the board for us to jot down. He said it would prepare us with the final.

Problem:

Optimize the function $f(x,y,z)=8x-4z$ subject to the constraint $x^2 + 10y^2 + z^2 = 5$

I am not 100% sure what optimize means and if Lagrange multiplier applies but this is what i have so far.

$f_{x}= 8$
$f_{y}= 0$
$f_{z}= -4$

$g_{x}=2x$
$g_{y}= 20y$
$g_{z}= 2z$

Combining we have:

(1) $8 = 2x\lambda$
(2) $0 = 20y\lambda$
(3) $-4 = 2z\lambda$

Solving (1) for x:

(4) $x = \frac{4}{\lambda}$
(5) $y = \lambda$
(6) $z = \frac{-2}{\lambda}$

Now, add in (4),(5), and (6) for the constraint

$\left(\frac{4}{\lambda}\right)^2 + 10\lambda^2+\left(\frac{-2}{\lambda}\right)^2 = 5$

then

$\frac{16}{\lambda^2} + 10\lambda^2+\frac{4}{\lambda^2} = 5$

So, at this point i am stuck. I don't know how to finish.
I don't even know if i was suppose to use Lagrange multiplier or if its correct up to that point?

If someone could let me know if i did the problem correctly and help me finish?
Thank you so much.

2. ## Re: Lagrange Multipliers

Originally Posted by icelated
The teacher gave us some problems on the board for us to jot down. He said it would prepare us with the final.

Problem:

Optimize the function $f(x,y,z)=8x-4z$ subject to the constraint $x^2 + 10y^2 + z^2 = 5$

I am not 100% sure what optimize means and if Lagrange multiplier applies but this is what i have so far.

$f_{x}= 8$
$f_{y}= 0$
$f_{z}= -4$

$g_{x}=2x$
$g_{y}= 20y$
$g_{z}= 2z$

Combining we have:

(1) $8 = 2x\lambda$
(2) $0 = 20y\lambda$
(3) $-4 = 2z\lambda$

Solving (1) for x:

(4) $x = \frac{4}{\lambda}$
(5) $y = \lambda$
Absolutely not! $0= 20y\lambda$ gives y= 0.

(6) $z = \frac{-2}{\lambda}$

Now, add in (4),(5), and (6) for the constraint

$\left(\frac{4}{\lambda}\right)^2 + 10\lambda^2+\left(\frac{-2}{\lambda}\right)^2 = 5$

then

$\frac{16}{\lambda^2} + 10\lambda^2+\frac{4}{\lambda^2} = 5$

So, at this point i am stuck. I don't know how to finish.
I don't even know if i was suppose to use Lagrange multiplier or if its correct up to that point?

If someone could let me know if i did the problem correctly and help me finish?
Thank you so much.

3. ## Re: Lagrange Multipliers

oh how did i miss that. So the y dropped out making the problem easier.